Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
a8d73744
Commit
a8d73744
authored
May 20, 2013
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added point_transform_projective and find_projective_transform()
parent
6e2a867a
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
389 additions
and
0 deletions
+389
-0
point_transforms.h
dlib/geometry/point_transforms.h
+256
-0
point_transforms_abstract.h
dlib/geometry/point_transforms_abstract.h
+72
-0
geometry.cpp
dlib/test/geometry.cpp
+61
-0
No files found.
dlib/geometry/point_transforms.h
View file @
a8d73744
...
...
@@ -8,6 +8,7 @@
#include "vector.h"
#include "../matrix.h"
#include "../matrix/matrix_la.h"
#include "../optimization/optimization.h"
#include <vector>
namespace
dlib
...
...
@@ -159,6 +160,261 @@ namespace dlib
return
point_transform_affine
(
subm
(
m
,
0
,
0
,
2
,
2
),
colm
(
m
,
2
));
}
// ----------------------------------------------------------------------------------------
class
point_transform_projective
{
public
:
point_transform_projective
(
const
matrix
<
double
,
3
,
3
>&
m_
)
:
m
(
m_
)
{
}
point_transform_projective
(
const
point_transform_affine
&
tran
)
{
set_subm
(
m
,
0
,
0
,
2
,
2
)
=
tran
.
get_m
();
set_subm
(
m
,
0
,
2
,
2
,
1
)
=
tran
.
get_b
();
m
(
2
,
0
)
=
0
;
m
(
2
,
1
)
=
0
;
m
(
2
,
2
)
=
1
;
}
const
dlib
::
vector
<
double
,
2
>
operator
()
(
const
dlib
::
vector
<
double
,
2
>&
p
)
const
{
dlib
::
vector
<
double
,
3
>
temp
(
p
);
temp
.
z
()
=
1
;
temp
=
m
*
temp
;
if
(
temp
.
z
()
!=
0
)
temp
=
temp
/
temp
.
z
();
return
temp
;
}
const
matrix
<
double
,
3
,
3
>&
get_m
(
)
const
{
return
m
;
}
private
:
matrix
<
double
,
3
,
3
>
m
;
};
// ----------------------------------------------------------------------------------------
namespace
impl_proj
{
inline
point_transform_projective
find_projective_transform_basic
(
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
from_points
,
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
to_points
)
/*!
ensures
- Uses the system of equations approach to finding a projective transform.
This is "Method 3" from Estimating Projective Transformation Matrix by
Zhengyou Zhang.
- It should be emphasized that the find_projective_transform_basic()
routine, which uses the most popular method for finding projective
transformations, doesn't really work well when the minimum error solution
doesn't have zero error. In this case, it can deviate by a large amount
from the proper minimum mean squared error transformation. Therefore,
our overall strategy will be to use the solution from
find_projective_transform_basic() as a starting point for a BFGS based
non-linear optimizer which will optimize the correct mean squared error
criterion.
!*/
{
// make sure requires clause is not broken
DLIB_ASSERT
(
from_points
.
size
()
==
to_points
.
size
()
&&
from_points
.
size
()
>=
4
,
"
\t
point_transform_projective find_projective_transform_basic(from_points, to_points)"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
from_points.size(): "
<<
from_points
.
size
()
<<
"
\n\t
to_points.size(): "
<<
to_points
.
size
()
);
matrix
<
double
,
9
,
9
>
accum
,
u
,
v
;
matrix
<
double
,
9
,
1
>
w
;
matrix
<
double
,
2
,
9
>
B
;
accum
=
0
;
B
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
from_points
.
size
();
++
i
)
{
dlib
::
vector
<
double
,
3
>
f
=
from_points
[
i
];
f
.
z
()
=
1
;
dlib
::
vector
<
double
,
3
>
t
=
to_points
[
i
];
t
.
z
()
=
1
;
set_subm
(
B
,
0
,
0
,
1
,
3
)
=
t
.
y
()
*
trans
(
f
);
set_subm
(
B
,
1
,
0
,
1
,
3
)
=
trans
(
f
);
set_subm
(
B
,
0
,
3
,
1
,
3
)
=
-
t
.
x
()
*
trans
(
f
);
set_subm
(
B
,
1
,
6
,
1
,
3
)
=
-
t
.
x
()
*
trans
(
f
);
accum
+=
trans
(
B
)
*
B
;
}
svd2
(
true
,
false
,
accum
,
u
,
w
,
v
);
long
i
=
index_of_min
(
w
);
return
point_transform_projective
(
reshape
(
colm
(
u
,
i
),
3
,
3
));
}
// ----------------------------------------------------------------------------------------
struct
obj
{
/*!
WHAT THIS OBJECT REPRESENTS
This is the objective function we really want to minimize when looking
for a transformation matrix. That is, we would like the transformed
points to be as close as possible to their "to" points. Here,
closeness is measured using Euclidean distance.
!*/
obj
(
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
from_points_
,
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
to_points_
)
:
from_points
(
from_points_
)
,
to_points
(
to_points_
)
{}
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
from_points
;
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
to_points
;
double
operator
()
(
const
matrix
<
double
,
9
,
1
>&
p
)
const
{
point_transform_projective
tran
(
reshape
(
p
,
3
,
3
));
double
sum
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
from_points
.
size
();
++
i
)
{
sum
+=
length_squared
(
tran
(
from_points
[
i
])
-
to_points
[
i
]);
}
return
sum
;
}
};
struct
obj_der
{
/*!
WHAT THIS OBJECT REPRESENTS
This is the derivative of obj.
!*/
obj_der
(
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
from_points_
,
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
to_points_
)
:
from_points
(
from_points_
)
,
to_points
(
to_points_
)
{}
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
from_points
;
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
to_points
;
matrix
<
double
,
9
,
1
>
operator
()
(
const
matrix
<
double
,
9
,
1
>&
p
)
const
{
const
matrix
<
double
,
3
,
3
>
H
=
reshape
(
p
,
3
,
3
);
matrix
<
double
,
3
,
3
>
grad
;
grad
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
from_points
.
size
();
++
i
)
{
dlib
::
vector
<
double
,
3
>
from
,
to
;
from
=
from_points
[
i
];
from
.
z
()
=
1
;
to
=
to_points
[
i
];
to
.
z
()
=
1
;
matrix
<
double
,
3
,
1
>
w
=
H
*
from
;
const
double
scale
=
(
w
(
2
)
!=
0
)
?
(
1
.
0
/
w
(
2
))
:
(
1
);
w
*=
scale
;
matrix
<
double
,
3
,
1
>
residual
=
(
w
-
to
)
*
2
*
scale
;
grad
(
0
,
0
)
+=
from
.
x
()
*
residual
(
0
);
grad
(
0
,
1
)
+=
from
.
y
()
*
residual
(
0
);
grad
(
0
,
2
)
+=
residual
(
0
);
grad
(
1
,
0
)
+=
from
.
x
()
*
residual
(
1
);
grad
(
1
,
1
)
+=
from
.
y
()
*
residual
(
1
);
grad
(
1
,
2
)
+=
residual
(
1
);
grad
(
2
,
0
)
+=
-
(
from
.
x
()
*
w
(
0
)
*
residual
(
0
)
+
from
.
x
()
*
w
(
1
)
*
residual
(
1
));
grad
(
2
,
1
)
+=
-
(
from
.
y
()
*
w
(
0
)
*
residual
(
0
)
+
from
.
y
()
*
w
(
1
)
*
residual
(
1
));
grad
(
2
,
2
)
+=
-
(
w
(
0
)
*
residual
(
0
)
+
w
(
1
)
*
residual
(
1
));
}
return
reshape_to_column_vector
(
grad
);
}
};
}
// ----------------------------------------------------------------------------------------
inline
point_transform_projective
find_projective_transform
(
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
from_points
,
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
to_points
)
{
using
namespace
impl_proj
;
// make sure requires clause is not broken
DLIB_ASSERT
(
from_points
.
size
()
==
to_points
.
size
()
&&
from_points
.
size
()
>=
4
,
"
\t
point_transform_projective find_projective_transform(from_points, to_points)"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
from_points.size(): "
<<
from_points
.
size
()
<<
"
\n\t
to_points.size(): "
<<
to_points
.
size
()
);
// Find a candidate projective transformation. Also, find the best affine
// transform and then compare it with the projective transform estimated using the
// direct SVD method. Use whichever one works better as the starting point for a
// BFGS based optimizer. If the best solution has large mean squared error and is
// also close to affine then find_projective_transform_basic() might give a very
// bad initial guess. So also checking for a good affine transformation can
// produce a much better final result in many cases.
point_transform_projective
tran1
=
find_projective_transform_basic
(
from_points
,
to_points
);
point_transform_affine
tran2
=
find_affine_transform
(
from_points
,
to_points
);
// check which is best
double
error1
=
0
;
double
error2
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
from_points
.
size
();
++
i
)
{
error1
+=
length_squared
(
tran1
(
from_points
[
i
])
-
to_points
[
i
]);
error2
+=
length_squared
(
tran2
(
from_points
[
i
])
-
to_points
[
i
]);
}
matrix
<
double
,
9
,
1
>
params
;
// Pick the minimum error solution among the two so far.
if
(
error1
<
error2
)
params
=
reshape_to_column_vector
(
tran1
.
get_m
());
else
params
=
reshape_to_column_vector
(
point_transform_projective
(
tran2
).
get_m
());
// Now refine the transformation matrix so that we can be sure we have
// at least a local minimizer.
obj
o
(
from_points
,
to_points
);
obj_der
der
(
from_points
,
to_points
);
find_min
(
bfgs_search_strategy
(),
objective_delta_stop_strategy
(
1e-6
,
100
),
o
,
der
,
params
,
0
);
return
point_transform_projective
(
reshape
(
params
,
3
,
3
));
}
// ----------------------------------------------------------------------------------------
template
<
typename
T
>
...
...
dlib/geometry/point_transforms_abstract.h
View file @
a8d73744
...
...
@@ -81,6 +81,78 @@ namespace dlib
all possible solutions).
!*/
// ----------------------------------------------------------------------------------------
class
point_transform_projective
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an object that takes 2D points or vectors and
applies a projective transformation to them.
!*/
public
:
point_transform_projective
(
const
matrix
<
double
,
3
,
3
>&
m
);
/*!
ensures
- #get_m() == m
!*/
point_transform_projective
(
const
point_transform_affine
&
tran
);
/*!
ensures
- This object will perform exactly the same transformation as the given
affine transform.
!*/
const
dlib
::
vector
<
double
,
2
>
operator
()
(
const
dlib
::
vector
<
double
,
2
>&
p
)
const
;
/*!
ensures
- Applies the projective transformation defined by this object's constructor
to p and returns the result. To define this precisely:
- let p_h == the point p in homogeneous coordinates. That is:
- p_h.x() == p.x()
- p_h.y() == p.y()
- p_h.z() == 1
- let x == get_m()*p_h
- Then this function returns the value x/x.z()
!*/
const
matrix
<
double
,
3
,
3
>&
get_m
(
)
const
;
/*!
ensures
- returns the transformation matrix used by this object.
!*/
};
// ----------------------------------------------------------------------------------------
point_transform_projective
find_projective_transform
(
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
from_points
,
const
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>&
to_points
);
/*!
requires
- from_points.size() == to_points.size()
- from_points.size() >= 4
ensures
- returns a point_transform_projective object, T, such that for all valid i:
length(T(from_points[i]) - to_points[i])
is minimized as often as possible. That is, this function finds the projective
transform that maps points in from_points to points in to_points. If no
projective transform exists which performs this mapping exactly then the one
which minimizes the mean squared error is selected.
!*/
// ----------------------------------------------------------------------------------------
class
point_transform
...
...
dlib/test/geometry.cpp
View file @
a8d73744
...
...
@@ -647,6 +647,65 @@ namespace
}
// ----------------------------------------------------------------------------------------
double
projective_transform_pass_rate
(
const
double
error_rate
)
{
print_spinner
();
dlog
<<
LINFO
<<
"projective_transform_pass_rate, error_rate: "
<<
error_rate
;
dlib
::
rand
rnd
;
running_stats
<
double
>
pass_rate
;
for
(
int
rounds
=
0
;
rounds
<
1000
;
++
rounds
)
{
running_stats
<
double
>
rs
,
rs_true
;
matrix
<
double
>
H
=
2
*
(
randm
(
3
,
3
,
rnd
)
-
0.5
);
H
(
0
,
2
)
=
rnd
.
get_random_gaussian
()
*
10
;
H
(
1
,
2
)
=
rnd
.
get_random_gaussian
()
*
10
;
H
(
2
,
0
)
=
rnd
.
get_random_double
()
*
2.1
;
H
(
2
,
1
)
=
rnd
.
get_random_double
()
*
2.1
;
H
(
2
,
2
)
=
1
+
rnd
.
get_random_gaussian
()
*
3.1
;
point_transform_projective
tran
(
H
);
const
int
num
=
rnd
.
get_random_32bit_number
()
%
8
+
4
;
std
::
vector
<
dlib
::
vector
<
double
,
2
>
>
from_points
,
to_points
;
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
dlib
::
vector
<
double
,
2
>
p
=
randm
(
2
,
1
,
rnd
)
*
1000
;
from_points
.
push_back
(
p
);
to_points
.
push_back
(
tran
(
p
)
+
(
randm
(
2
,
1
,
rnd
)
-
0.5
)
*
error_rate
);
}
point_transform_projective
tran2
=
find_projective_transform
(
from_points
,
to_points
);
for
(
unsigned
long
i
=
0
;
i
<
from_points
.
size
();
++
i
)
{
const
double
err
=
length_squared
(
tran2
(
from_points
[
i
])
-
to_points
[
i
]);
rs
.
add
(
err
);
const
double
err_true
=
length_squared
(
tran
(
from_points
[
i
])
-
to_points
[
i
]);
rs_true
.
add
(
err_true
);
}
if
(
rs
.
mean
()
<
0.01
)
{
pass_rate
.
add
(
1
);
}
else
{
dlog
<<
LINFO
<<
" errors: mean/max: "
<<
rs
.
mean
()
<<
" "
<<
rs
.
max
();
pass_rate
.
add
(
0
);
}
}
dlog
<<
LINFO
<<
" pass_rate.mean(): "
<<
pass_rate
.
mean
();
return
pass_rate
.
mean
();
}
// ----------------------------------------------------------------------------------------
class
geometry_tester
:
public
tester
...
...
@@ -664,6 +723,8 @@ namespace
geometry_test
();
test_border_enumerator
();
test_find_affine_transform
();
DLIB_TEST
(
projective_transform_pass_rate
(
0.1
)
>
0.99
);
DLIB_TEST
(
projective_transform_pass_rate
(
0.0
)
==
1
);
}
}
a
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment