Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
aafa4116
Commit
aafa4116
authored
Aug 11, 2017
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added mult_prev layer.
parent
f7310f4b
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
217 additions
and
0 deletions
+217
-0
layers.h
dlib/dnn/layers.h
+101
-0
layers_abstract.h
dlib/dnn/layers_abstract.h
+72
-0
dnn.cpp
dlib/test/dnn.cpp
+44
-0
No files found.
dlib/dnn/layers.h
View file @
aafa4116
...
@@ -2126,6 +2126,107 @@ namespace dlib
...
@@ -2126,6 +2126,107 @@ namespace dlib
using
add_prev9_
=
add_prev_
<
tag9
>
;
using
add_prev9_
=
add_prev_
<
tag9
>
;
using
add_prev10_
=
add_prev_
<
tag10
>
;
using
add_prev10_
=
add_prev_
<
tag10
>
;
// ----------------------------------------------------------------------------------------
template
<
template
<
typename
>
class
tag
>
class
mult_prev_
{
public
:
const
static
unsigned
long
id
=
tag_id
<
tag
>::
id
;
mult_prev_
()
{
}
template
<
typename
SUBNET
>
void
setup
(
const
SUBNET
&
/*sub*/
)
{
}
template
<
typename
SUBNET
>
void
forward
(
const
SUBNET
&
sub
,
resizable_tensor
&
output
)
{
auto
&&
t1
=
sub
.
get_output
();
auto
&&
t2
=
layer
<
tag
>
(
sub
).
get_output
();
output
.
set_size
(
std
::
max
(
t1
.
num_samples
(),
t2
.
num_samples
()),
std
::
max
(
t1
.
k
(),
t2
.
k
()),
std
::
max
(
t1
.
nr
(),
t2
.
nr
()),
std
::
max
(
t1
.
nc
(),
t2
.
nc
()));
tt
::
multiply_zero_padded
(
false
,
output
,
t1
,
t2
);
}
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
/*params_grad*/
)
{
auto
&&
t1
=
sub
.
get_output
();
auto
&&
t2
=
layer
<
tag
>
(
sub
).
get_output
();
// The gradient just flows backwards to the two layers that forward()
// multiplied together.
tt
::
multiply_zero_padded
(
true
,
sub
.
get_gradient_input
(),
t2
,
gradient_input
);
tt
::
multiply_zero_padded
(
true
,
layer
<
tag
>
(
sub
).
get_gradient_input
(),
t1
,
gradient_input
);
}
const
tensor
&
get_layer_params
()
const
{
return
params
;
}
tensor
&
get_layer_params
()
{
return
params
;
}
friend
void
serialize
(
const
mult_prev_
&
,
std
::
ostream
&
out
)
{
serialize
(
"mult_prev_"
,
out
);
}
friend
void
deserialize
(
mult_prev_
&
,
std
::
istream
&
in
)
{
std
::
string
version
;
deserialize
(
version
,
in
);
if
(
version
!=
"mult_prev_"
)
throw
serialization_error
(
"Unexpected version '"
+
version
+
"' found while deserializing dlib::mult_prev_."
);
}
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
mult_prev_
&
item
)
{
out
<<
"mult_prev"
<<
id
;
return
out
;
}
friend
void
to_xml
(
const
mult_prev_
&
item
,
std
::
ostream
&
out
)
{
out
<<
"<mult_prev tag='"
<<
id
<<
"'/>
\n
"
;
}
private
:
resizable_tensor
params
;
};
template
<
template
<
typename
>
class
tag
,
typename
SUBNET
>
using
mult_prev
=
add_layer
<
mult_prev_
<
tag
>
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev1
=
mult_prev
<
tag1
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev2
=
mult_prev
<
tag2
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev3
=
mult_prev
<
tag3
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev4
=
mult_prev
<
tag4
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev5
=
mult_prev
<
tag5
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev6
=
mult_prev
<
tag6
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev7
=
mult_prev
<
tag7
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev8
=
mult_prev
<
tag8
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev9
=
mult_prev
<
tag9
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev10
=
mult_prev
<
tag10
,
SUBNET
>
;
using
mult_prev1_
=
mult_prev_
<
tag1
>
;
using
mult_prev2_
=
mult_prev_
<
tag2
>
;
using
mult_prev3_
=
mult_prev_
<
tag3
>
;
using
mult_prev4_
=
mult_prev_
<
tag4
>
;
using
mult_prev5_
=
mult_prev_
<
tag5
>
;
using
mult_prev6_
=
mult_prev_
<
tag6
>
;
using
mult_prev7_
=
mult_prev_
<
tag7
>
;
using
mult_prev8_
=
mult_prev_
<
tag8
>
;
using
mult_prev9_
=
mult_prev_
<
tag9
>
;
using
mult_prev10_
=
mult_prev_
<
tag10
>
;
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
class
relu_
class
relu_
...
...
dlib/dnn/layers_abstract.h
View file @
aafa4116
...
@@ -2138,6 +2138,78 @@ namespace dlib
...
@@ -2138,6 +2138,78 @@ namespace dlib
using
add_prev9_
=
add_prev_
<
tag9
>
;
using
add_prev9_
=
add_prev_
<
tag9
>
;
using
add_prev10_
=
add_prev_
<
tag10
>
;
using
add_prev10_
=
add_prev_
<
tag10
>
;
// ----------------------------------------------------------------------------------------
template
<
template
<
typename
>
class
tag
>
class
mult_prev_
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
defined above. This layer simply multiplies the output of two previous
layers. In particular, it multiplies the tensor from its immediate
predecessor layer, sub.get_output(), with the tensor from a deeper layer,
layer<tag>(sub).get_output().
Therefore, you supply a tag via mult_prev_'s template argument that tells
it what layer to multiply with the output of the previous layer. The
result of this multiplication is output by mult_prev_. Finally, the
multiplication happens pointwise according to 4D tensor arithmetic. If the
dimensions don't match then missing elements are presumed to be equal to 0.
Moreover, each dimension of the output tensor is equal to the maximum
dimension of either of the inputs. That is, if the tensors A and B are
being multiplied to produce C then:
- C.num_samples() == max(A.num_samples(), B.num_samples())
- C.k() == max(A.k(), B.k())
- C.nr() == max(A.nr(), B.nr())
- C.nc() == max(A.nc(), B.nc())
!*/
public
:
mult_prev_
(
);
template
<
typename
SUBNET
>
void
setup
(
const
SUBNET
&
sub
);
template
<
typename
SUBNET
>
void
forward
(
const
SUBNET
&
sub
,
resizable_tensor
&
output
);
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
);
const
tensor
&
get_layer_params
()
const
;
tensor
&
get_layer_params
();
/*!
These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
!*/
};
template
<
template
<
typename
>
class
tag
,
typename
SUBNET
>
using
mult_prev
=
add_layer
<
mult_prev_
<
tag
>
,
SUBNET
>
;
// Here we add some convenient aliases for using mult_prev_ with the tag layers.
template
<
typename
SUBNET
>
using
mult_prev1
=
mult_prev
<
tag1
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev2
=
mult_prev
<
tag2
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev3
=
mult_prev
<
tag3
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev4
=
mult_prev
<
tag4
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev5
=
mult_prev
<
tag5
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev6
=
mult_prev
<
tag6
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev7
=
mult_prev
<
tag7
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev8
=
mult_prev
<
tag8
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev9
=
mult_prev
<
tag9
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
mult_prev10
=
mult_prev
<
tag10
,
SUBNET
>
;
using
mult_prev1_
=
mult_prev_
<
tag1
>
;
using
mult_prev2_
=
mult_prev_
<
tag2
>
;
using
mult_prev3_
=
mult_prev_
<
tag3
>
;
using
mult_prev4_
=
mult_prev_
<
tag4
>
;
using
mult_prev5_
=
mult_prev_
<
tag5
>
;
using
mult_prev6_
=
mult_prev_
<
tag6
>
;
using
mult_prev7_
=
mult_prev_
<
tag7
>
;
using
mult_prev8_
=
mult_prev_
<
tag8
>
;
using
mult_prev9_
=
mult_prev_
<
tag9
>
;
using
mult_prev10_
=
mult_prev_
<
tag10
>
;
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template
<
template
<
...
...
dlib/test/dnn.cpp
View file @
aafa4116
...
@@ -1990,6 +1990,49 @@ namespace
...
@@ -1990,6 +1990,49 @@ namespace
}
}
// ----------------------------------------------------------------------------------------
void
test_simple_linear_regression_with_mult_prev
()
{
print_spinner
();
const
int
num_samples
=
1000
;
::
std
::
vector
<
matrix
<
double
>>
x
(
num_samples
);
::
std
::
vector
<
float
>
y
(
num_samples
);
const
float
true_slope
=
2.0
;
for
(
int
ii
=
0
;
ii
<
num_samples
;
++
ii
)
{
const
double
val
=
static_cast
<
double
>
(
ii
-
500
)
/
100
;
matrix
<
double
>
tmp
(
1
,
1
);
tmp
=
val
;
x
[
ii
]
=
tmp
;
y
[
ii
]
=
(
true_slope
*
static_cast
<
float
>
(
val
*
val
));
}
randomize_samples
(
x
,
y
);
using
net_type
=
loss_mean_squared
<
fc
<
1
,
mult_prev1
<
fc
<
2
,
tag1
<
fc
<
2
,
input
<
matrix
<
double
>>>>>>>>
;
net_type
net
;
sgd
defsolver
(
0
,
0.9
);
dnn_trainer
<
net_type
>
trainer
(
net
,
defsolver
);
trainer
.
set_learning_rate
(
1e-5
);
trainer
.
set_min_learning_rate
(
1e-11
);
trainer
.
set_mini_batch_size
(
50
);
trainer
.
set_max_num_epochs
(
300
);
trainer
.
train
(
x
,
y
);
running_stats
<
double
>
rs
;
for
(
size_t
i
=
0
;
i
<
x
.
size
();
++
i
)
{
double
val
=
y
[
i
];
double
out
=
net
(
x
[
i
]);
rs
.
add
(
std
::
abs
(
val
-
out
));
}
dlog
<<
LINFO
<<
"rs.mean(): "
<<
rs
.
mean
();
dlog
<<
LINFO
<<
"rs.stddev(): "
<<
rs
.
stddev
();
dlog
<<
LINFO
<<
"rs.max(): "
<<
rs
.
max
();
DLIB_TEST
(
rs
.
mean
()
<
0.1
);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
void
test_multioutput_linear_regression
()
void
test_multioutput_linear_regression
()
...
@@ -2706,6 +2749,7 @@ namespace
...
@@ -2706,6 +2749,7 @@ namespace
test_copy_tensor_cpu
();
test_copy_tensor_cpu
();
test_concat
();
test_concat
();
test_simple_linear_regression
();
test_simple_linear_regression
();
test_simple_linear_regression_with_mult_prev
();
test_multioutput_linear_regression
();
test_multioutput_linear_regression
();
test_simple_autoencoder
();
test_simple_autoencoder
();
test_loss_multiclass_per_pixel_learned_params_on_trivial_single_pixel_task
();
test_loss_multiclass_per_pixel_learned_params_on_trivial_single_pixel_task
();
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment