Commit afcc4e72 authored by Davis King's avatar Davis King

Added a nuclear norm regularization option to the structural svm solver.

parent 3e17828e
......@@ -238,9 +238,33 @@ namespace dlib
skip_cache(true),
count_below_eps(0),
max_cache_size(5),
converged(false),
nuclear_norm_part(0),
cache_based_eps(std::numeric_limits<scalar_type>::infinity()),
C(1)
{}
scalar_type get_cache_based_epsilon (
) const
{
return cache_based_eps;
}
void set_cache_based_epsilon (
scalar_type eps_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(eps_ > 0,
"\t void structural_svm_problem::set_cache_based_epsilon()"
<< "\n\t eps_ must be greater than 0"
<< "\n\t eps_: " << eps_
<< "\n\t this: " << this
);
cache_based_eps = eps_;
}
void set_epsilon (
scalar_type eps_
)
......@@ -299,6 +323,41 @@ namespace dlib
C = C_;
}
void add_nuclear_norm_regularizer (
long first_dimension,
long rows,
long cols,
double regularization_strength
)
{
// make sure requires clause is not broken
DLIB_ASSERT(0 <= first_dimension && first_dimension < get_num_dimensions() &&
0 <= rows && 0 <= cols && rows*cols+first_dimension <= get_num_dimensions() &&
0 < regularization_strength,
"\t void structural_svm_problem::add_nuclear_norm_regularizer()"
<< "\n\t Invalid arguments were given to this function."
<< "\n\t first_dimension: " << first_dimension
<< "\n\t rows: " << rows
<< "\n\t cols: " << cols
<< "\n\t get_num_dimensions(): " << get_num_dimensions()
<< "\n\t regularization_strength: " << regularization_strength
<< "\n\t this: " << this
);
nuclear_norm_regularizer temp;
temp.first_dimension = first_dimension;
temp.nr = rows;
temp.nc = cols;
temp.regularization_strength = regularization_strength;
nuclear_norm_regularizers.push_back(temp);
}
unsigned long num_nuclear_norm_regularizers (
) const { return nuclear_norm_regularizers.size(); }
void clear_nuclear_norm_regularizers (
) { nuclear_norm_regularizers.clear(); }
virtual long get_num_dimensions (
) const = 0;
......@@ -339,23 +398,48 @@ namespace dlib
if (verbose)
{
using namespace std;
if (nuclear_norm_regularizers.size() != 0)
{
cout << "objective: " << current_objective_value << endl;
cout << "objective gap: " << current_error_gap << endl;
cout << "risk: " << current_risk_value-nuclear_norm_part << endl;
cout << "risk+nuclear norm: " << current_risk_value << endl;
cout << "risk+nuclear norm gap: " << current_risk_gap << endl;
cout << "num planes: " << num_cutting_planes << endl;
cout << "iter: " << num_iterations << endl;
}
else
{
cout << "objective: " << current_objective_value << endl;
cout << "objective gap: " << current_error_gap << endl;
cout << "risk: " << current_risk_value << endl;
cout << "risk gap: " << current_risk_gap << endl;
cout << "num planes: " << num_cutting_planes << endl;
cout << "iter: " << num_iterations << endl;
}
cout << endl;
}
saved_current_risk_gap = current_risk_gap;
if (converged)
{
return current_risk_gap < std::max(cache_based_eps,cache_based_eps*current_risk_value);
}
if (current_risk_gap < eps)
{
// Only stop when we see that the risk gap is small enough on a non-cached
// iteration.
// iteration. But even then, if we are supposed to do the cache based
// refinement then we just mark that we have "converged" to avoid further
// calls to the separation oracle and run all subsequent iterations off the
// cache.
if (skip_cache || max_cache_size == 0)
return true;
{
converged = true;
skip_cache = false;
return current_risk_gap < std::max(cache_based_eps,cache_based_eps*current_risk_value);
}
++count_below_eps;
......@@ -379,6 +463,45 @@ namespace dlib
return false;
}
void compute_nuclear_norm_parts(
const matrix_type& m,
matrix_type& grad,
scalar_type& obj
) const
{
obj = 0;
grad.set_size(m.size());
grad = 0;
matrix<double> u,v,w,f;
nuclear_norm_part = 0;
for (unsigned long i = 0; i < nuclear_norm_regularizers.size(); ++i)
{
const long nr = nuclear_norm_regularizers[i].nr;
const long nc = nuclear_norm_regularizers[i].nc;
const long size = nr*nc;
const long idx = nuclear_norm_regularizers[i].first_dimension;
const double strength = nuclear_norm_regularizers[i].regularization_strength;
f = matrix_cast<double>(reshape(rowm(m, range(idx, idx+size-1)), nr, nc));
svd3(f, u,w,v);
w = round_zeros(w, std::max(1e-9,max(w)*1e-7));
const double norm = sum(w);
obj += strength*norm;
nuclear_norm_part += strength*norm/C;
w = w>0;
f = u*diagm(w)*trans(v);
set_rowm(grad, range(idx, idx+size-1)) = matrix_cast<double>(strength*reshape_to_column_vector(f));
}
obj /= C;
grad /= C;
}
virtual void get_risk (
matrix_type& w,
scalar_type& risk,
......@@ -413,6 +536,15 @@ namespace dlib
subgradient /= num;
total_loss /= num;
risk = total_loss + dot(subgradient,w);
if (nuclear_norm_regularizers.size() != 0)
{
matrix_type grad;
scalar_type obj;
compute_nuclear_norm_parts(w, grad, obj);
risk += obj;
subgradient += grad;
}
}
virtual void call_separation_oracle_on_all_samples (
......@@ -448,6 +580,14 @@ namespace dlib
}
private:
struct nuclear_norm_regularizer
{
long first_dimension;
long nr;
long nc;
double regularization_strength;
};
std::vector<nuclear_norm_regularizer> nuclear_norm_regularizers;
mutable scalar_type saved_current_risk_gap;
mutable matrix_type psi_true;
......@@ -459,6 +599,9 @@ namespace dlib
mutable bool skip_cache;
mutable int count_below_eps;
unsigned long max_cache_size;
mutable bool converged;
mutable double nuclear_norm_part;
scalar_type cache_based_eps;
scalar_type C;
};
......
......@@ -31,6 +31,9 @@ namespace dlib
- get_epsilon() == 0.001
- get_max_cache_size() == 5
- get_c() == 1
- get_cache_based_epsilon() == std::numeric_limits<scalar_type>::infinity()
(I.e. the cache based epsilon feature is disabled)
- num_nuclear_norm_regularizers() == 0
- This object will not be verbose
WHAT THIS OBJECT REPRESENTS
......@@ -123,6 +126,41 @@ namespace dlib
optimal value".
!*/
scalar_type get_cache_based_epsilon (
) const;
/*!
ensures
- if (get_max_cache_size() != 0) then
- The solver will not stop when the average sample risk is within
get_epsilon() of its optimal value. Instead, it will keep running
but will run the optimizer completely on the cache until the average
sample risk is within #get_cache_based_epsilon() of its optimal
value. This means that it will perform this additional refinement in
the solution accuracy without making any additional calls to the
separation_oracle(). This is useful when using a nuclear norm
regularization term because it allows you to quickly solve the
optimization problem to a high precision, which in the case of a
nuclear norm regularized problem means that many of the learned
matrices will be low rank or very close to low rank due to the
nuclear norm regularizer. This may not happen without solving the
problem to a high accuracy or their ranks may be difficult to
determine, so the extra accuracy given by the cache based refinement
is very useful. Finally, note that we include the nuclear norm term
as part of the "risk" for the purposes of determining when to stop.
- else
- The value of #get_cache_based_epsilon() has no effect.
!*/
void set_cache_based_epsilon (
scalar_type eps
);
/*!
requires
- eps > 0
ensures
- #get_cache_based_epsilon() == eps
!*/
void set_max_cache_size (
unsigned long max_size
);
......@@ -142,6 +180,52 @@ namespace dlib
if the separation oracle is cheap to evaluate.
!*/
void add_nuclear_norm_regularizer (
long first_dimension,
long rows,
long cols,
double regularization_strength
);
/*!
requires
- 0 <= first_dimension < get_num_dimensions()
- 0 <= rows
- 0 <= cols
- first_dimension+rows*cols <= get_num_dimensions()
- 0 < regularization_strength
ensures
- Adds a nuclear norm regularization term to the optimization problem
solved by this object. That is, instead of solving:
Minimize: h(w) == 0.5*dot(w,w) + C*R(w)
this object will solve:
Minimize: h(w) == 0.5*dot(w,w) + C*R(w) + regularization_strength*nuclear_norm_of(part of w)
where "part of w" is the part of w indicated by the arguments to this
function. In particular, the part of w included in the nuclear norm is
exactly the matrix reshape(rowm(w, range(first_dimension, first_dimension+rows*cols-1)), rows, cols).
Therefore, if you think of the w vector as being the concatenation of a
bunch of matrices then you can use multiple calls to add_nuclear_norm_regularizer()
to add nuclear norm regularization terms to any of the matrices packed into w.
- #num_nuclear_norm_regularizers() == num_nuclear_norm_regularizers() + 1
!*/
unsigned long num_nuclear_norm_regularizers (
) const;
/*!
ensures
- returns the number of nuclear norm regularizers that are currently a part
of this optimization problem. That is, returns the number of times
add_nuclear_norm_regularizer() has been called since the last call to
clear_nuclear_norm_regularizers() or object construction, whichever is
most recent.
!*/
void clear_nuclear_norm_regularizers (
);
/*!
ensures
- #num_nuclear_norm_regularizers() == 0
!*/
void be_verbose (
);
/*!
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment