Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
b2547b62
Commit
b2547b62
authored
Nov 09, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added references to the book Structured Prediction and Learning in Computer Vision
parent
6ccf3ac6
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
23 additions
and
2 deletions
+23
-2
books.xml
docs/docs/books.xml
+8
-0
ml.xml
docs/docs/ml.xml
+15
-2
No files found.
docs/docs/books.xml
View file @
b2547b62
...
@@ -273,6 +273,14 @@
...
@@ -273,6 +273,14 @@
</ul><br/>
</ul><br/>
</li>
</li>
<li>
<i>
Structured Prediction and Learning in Computer Vision
</i>
by Sebastian Nowozin and Christoph H. Lampert 2011
<ul>
If you are looking for a book discussing the background material necessary
for understanding things like the
<a
href=
"ml.html#structural_svm_problem"
>
Structural SVM
</a>
tools in dlib then this is a good book. It is also available online
in
<a
href=
"http://www.nowozin.net/sebastian/papers/nowozin2011structured-tutorial.pdf"
>
PDF form
</a>
.
</ul><br/>
</li>
</ul>
</ul>
<h2>
Image Processing
</h2>
<h2>
Image Processing
</h2>
...
...
docs/docs/ml.xml
View file @
b2547b62
...
@@ -2350,10 +2350,18 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
...
@@ -2350,10 +2350,18 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
T. Joachims, T. Finley, Chun-Nam Yu, Cutting-Plane Training of Structural SVMs,
T. Joachims, T. Finley, Chun-Nam Yu, Cutting-Plane Training of Structural SVMs,
Machine Learning, 77(1):27-59, 2009.
Machine Learning, 77(1):27-59, 2009.
</blockquote>
</blockquote>
Note that this object is essentially a tool for solving the 1-Slack structural
Note that this object is essentially a tool for solving the 1-Slack structural
SVM with margin-rescaling. Specifically, see Algorithm 3 in the above referenced
SVM with margin-rescaling. Specifically, see Algorithm 3 in the above referenced
paper.
paper.
<br/><br/>
Finally, for a very detailed introduction to this subject, you should consider the book:
<blockquote>
<i><a
href=
"http://www.nowozin.net/sebastian/papers/nowozin2011structured-tutorial.pdf"
>
Structured
Prediction and Learning in Computer Vision
</a></i>
by Sebastian Nowozin and
Christoph H. Lampert
</blockquote>
</description>
</description>
</component>
</component>
...
@@ -2524,7 +2532,12 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
...
@@ -2524,7 +2532,12 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<p>
<p>
Note that this is just a convenience wrapper around the
Note that this is just a convenience wrapper around the
<a
href=
"#structural_svm_graph_labeling_problem"
>
structural_svm_graph_labeling_problem
</a>
<a
href=
"#structural_svm_graph_labeling_problem"
>
structural_svm_graph_labeling_problem
</a>
to make it look similar to all the other trainers in dlib.
to make it look similar to all the other trainers in dlib. You might also
consider reading the book
<i><a
href=
"http://www.nowozin.net/sebastian/papers/nowozin2011structured-tutorial.pdf"
>
Structured
Prediction and Learning in Computer Vision
</a></i>
by Sebastian
Nowozin and Christoph H. Lampert since it contains a good introduction to machine learning
methods such as the algorithm implemented by the structural_graph_labeling_trainer.
</p>
</p>
</description>
</description>
<examples>
<examples>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment