Commit bf0ed361 authored by Davis King's avatar Davis King

Refactored code into a cleaner form.

parent 1bb12d6a
......@@ -85,7 +85,7 @@ namespace dlib
) const;
void get_feature_vector (
const std::vector<rectangle>& rects,
const rectangle& rect,
feature_vector_type& psi
) const;
......@@ -646,7 +646,7 @@ namespace dlib
>
void scan_image_pyramid<Pyramid_type,Feature_extractor_type>::
get_feature_vector (
const std::vector<rectangle>& rects,
const rectangle& rect,
feature_vector_type& psi
) const
{
......@@ -663,16 +663,11 @@ namespace dlib
<< "\n\t this: " << this
);
psi = 0;
pyramid_type pyr;
for (unsigned long i = 0; i < rects.size(); ++i)
{
rectangle mapped_rect;
detection_template best_template;
unsigned long best_level;
get_mapped_rect_and_metadata (rects[i], mapped_rect, best_template, best_level);
get_mapped_rect_and_metadata (rect, mapped_rect, best_template, best_level);
for (unsigned long j = 0; j < best_template.rects.size(); ++j)
{
......@@ -691,7 +686,6 @@ namespace dlib
}
}
}
}
}
......
......@@ -303,7 +303,7 @@ namespace dlib
!*/
void get_feature_vector (
const std::vector<rectangle>& rects,
const rectangle& rects,
feature_vector_type& psi
) const;
/*!
......@@ -312,20 +312,21 @@ namespace dlib
- get_num_detection_templates() > 0
- psi.size() >= get_num_dimensions()
ensures
- This function allows you to determine the feature vector used for a sliding window location
or the sum of such vectors for a set of locations.
- if (rects was produced by a call to detect(), i.e. rects contains the contents of dets) then
- #psi == the sum of feature vectors corresponding to the sliding window locations contained
in rects.
- Let w denote the w vector given to detect(), then we have:
- dot(w,#psi) == sum of scores of the dets produced by detect()
- This function allows you to determine the feature vector used for a sliding window location.
Note that this vector is added to psi.
- if (rect was produced by a call to detect(), i.e. rect contains an element of dets) then
- #psi == psi + the feature vector corresponding to the sliding window location indicated
by rect.
- Let w denote the w vector given to detect(), then if we assigned psi to 0 before calling
get_feature_vector() then we have:
- dot(w,#psi) == the score produced by detect() for rect.
- get_best_matching_rect(rect) == rect
- else
- Since scan_image_pyramid is a sliding window classifier system, not all possible rectangles can
be output by detect(). So in the case where rects contains rectangles which could not arise
from a call to detect(), this function will map the rectangles in rects to the nearest possible
object boxes and then store the sum of feature vectors for the mapped rectangles into #psi.
- for all valid i: get_best_matching_rect(rects[i]) == the rectangle rects[i] gets mapped to for
feature extraction.
be output by detect(). So in the case where rect could not arise from a call to detect(), this
function will map rect to the nearest possible object box and then add the feature vector for
the mapped rectangle into #psi.
- get_best_matching_rect(rect) == the rectangle rect gets mapped to for feature extraction.
!*/
};
......
......@@ -156,10 +156,12 @@ namespace dlib
scanner.load(images[idx]);
psi.set_size(get_num_dimensions());
std::vector<rectangle> mapped_rects;
scanner.get_feature_vector(truth_rects[idx], psi);
psi = 0;
for (unsigned long i = 0; i < truth_rects[idx].size(); ++i)
{
mapped_rects.push_back(scanner.get_best_matching_rect(truth_rects[idx][i]));
scanner.get_feature_vector(truth_rects[idx][i], psi);
}
psi(scanner.get_num_dimensions()) = -1.0*truth_rects[idx].size();
......@@ -332,7 +334,8 @@ namespace dlib
psi.set_size(get_num_dimensions());
psi = 0;
scanner.get_feature_vector(final_dets, psi);
for (unsigned long i = 0; i < final_dets.size(); ++i)
scanner.get_feature_vector(final_dets[i], psi);
psi(scanner.get_num_dimensions()) = -1.0*final_dets.size();
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment