Commit bfd61cf2 authored by Davis King's avatar Davis King

Just renamed get_scales() to get_hash_bin_sizes() to make things more clear.

parent bcd9a781
...@@ -21,11 +21,11 @@ namespace dlib ...@@ -21,11 +21,11 @@ namespace dlib
{ {
/*! /*!
INITIAL VALUE INITIAL VALUE
- scales == logspace(-1, 1, 3) - inv_bin_sizes == logspace(-1, 1, 3)
- num_dims == 1000 - num_dims == 1000
CONVENTION CONVENTION
- scales.size() > 0 - inv_bin_sizes.size() > 0
- num_dims == get_num_dimensions() - num_dims == get_num_dimensions()
- if (has_image_statistics()) then - if (has_image_statistics()) then
- rs[i] == the statistics of feature element i. I.e. the stats of fe(r,c)(i) - rs[i] == the statistics of feature element i. I.e. the stats of fe(r,c)(i)
...@@ -44,11 +44,11 @@ namespace dlib ...@@ -44,11 +44,11 @@ namespace dlib
void clear ( void clear (
); );
void set_scales ( void set_hash_bin_sizes (
const matrix<double,1,0>& new_scales const matrix<double,1,0>& bin_sizes
); );
const matrix<double,1,0>& get_scales ( const matrix<double,1,0> get_hash_bin_sizes (
) const; ) const;
template < template <
...@@ -136,7 +136,7 @@ namespace dlib ...@@ -136,7 +136,7 @@ namespace dlib
feature_extractor fe; feature_extractor fe;
typename feature_extractor::descriptor_type inv_stddev; typename feature_extractor::descriptor_type inv_stddev;
std::vector<running_stats<double> > rs; std::vector<running_stats<double> > rs;
matrix<double,1,0> scales; matrix<double,1,0> inv_bin_sizes;
long num_dims; long num_dims;
// Transient variables. These are here just so they don't have to get constructed over // Transient variables. These are here just so they don't have to get constructed over
...@@ -159,7 +159,7 @@ namespace dlib ...@@ -159,7 +159,7 @@ namespace dlib
serialize(item.fe, out); serialize(item.fe, out);
serialize(item.inv_stddev, out); serialize(item.inv_stddev, out);
serialize(item.rs, out); serialize(item.rs, out);
serialize(item.scales, out); serialize(item.inv_bin_sizes, out);
serialize(item.num_dims, out); serialize(item.num_dims, out);
} }
...@@ -172,7 +172,7 @@ namespace dlib ...@@ -172,7 +172,7 @@ namespace dlib
deserialize(item.fe, in); deserialize(item.fe, in);
deserialize(item.inv_stddev, in); deserialize(item.inv_stddev, in);
deserialize(item.rs, in); deserialize(item.rs, in);
deserialize(item.scales, in); deserialize(item.inv_bin_sizes, in);
deserialize(item.num_dims, in); deserialize(item.num_dims, in);
} }
...@@ -190,7 +190,7 @@ namespace dlib ...@@ -190,7 +190,7 @@ namespace dlib
) : ) :
num_dims(1000) num_dims(1000)
{ {
scales = logspace(-1,1,3); inv_bin_sizes = logspace(-1,1,3);
} }
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
...@@ -204,7 +204,7 @@ namespace dlib ...@@ -204,7 +204,7 @@ namespace dlib
{ {
fe.clear(); fe.clear();
inv_stddev = 0; inv_stddev = 0;
scales = logspace(-1,1,3); inv_bin_sizes = logspace(-1,1,3);
rs.clear(); rs.clear();
num_dims = 1000; num_dims = 1000;
} }
...@@ -215,18 +215,24 @@ namespace dlib ...@@ -215,18 +215,24 @@ namespace dlib
typename feature_extractor typename feature_extractor
> >
void hashed_feature_image<feature_extractor>:: void hashed_feature_image<feature_extractor>::
set_scales ( set_hash_bin_sizes (
const matrix<double,1,0>& new_scales const matrix<double,1,0>& bin_sizes
) )
{ {
// make sure requires clause is not broken // make sure requires clause is not broken
DLIB_ASSERT(new_scales.size() > 0, DLIB_ASSERT(bin_sizes.size() > 0,
"\t void hashed_feature_image::set_scales()" "\t void hashed_feature_image::set_hash_bin_sizes()"
<< "\n\t size of new_scales should not be zero" << "\n\t size of new_scales should not be zero"
<< "\n\t this: " << this << "\n\t this: " << this
); );
DLIB_ASSERT(min(bin_sizes) > 0,
"\t void hashed_feature_image::set_hash_bin_sizes()"
<< "\n\t All bins must have sizes greater than zero."
<< "\n\t min(bin_sizes): " << min(bin_sizes)
<< "\n\t this: " << this
);
scales = new_scales; inv_bin_sizes = reciprocal(bin_sizes);
} }
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
...@@ -234,11 +240,11 @@ namespace dlib ...@@ -234,11 +240,11 @@ namespace dlib
template < template <
typename feature_extractor typename feature_extractor
> >
const matrix<double,1,0>& hashed_feature_image<feature_extractor>:: const matrix<double,1,0> hashed_feature_image<feature_extractor>::
get_scales ( get_hash_bin_sizes (
) const ) const
{ {
return scales; return reciprocal(inv_bin_sizes);
} }
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
...@@ -313,7 +319,7 @@ namespace dlib ...@@ -313,7 +319,7 @@ namespace dlib
{ {
rs = item.rs; rs = item.rs;
inv_stddev = item.inv_stddev; inv_stddev = item.inv_stddev;
scales = item.scales; inv_bin_sizes = item.inv_bin_sizes;
fe.copy_configuration(item.fe); fe.copy_configuration(item.fe);
num_dims = item.num_dims; num_dims = item.num_dims;
} }
...@@ -441,15 +447,15 @@ namespace dlib ...@@ -441,15 +447,15 @@ namespace dlib
<< "\n\t this: " << this << "\n\t this: " << this
); );
hash_feats.resize(scales.size()); hash_feats.resize(inv_bin_sizes.size());
if (has_image_statistics()) if (has_image_statistics())
scaled_feats = pointwise_multiply(fe(row,col), inv_stddev); scaled_feats = pointwise_multiply(fe(row,col), inv_stddev);
else else
scaled_feats = fe(row,col); scaled_feats = fe(row,col);
for (long i = 0; i < scales.size(); ++i) for (long i = 0; i < inv_bin_sizes.size(); ++i)
{ {
quantized_feats = matrix_cast<int32>(scales(i)*scaled_feats); quantized_feats = matrix_cast<int32>(inv_bin_sizes(i)*scaled_feats);
hash_feats[i] = std::make_pair(hash(quantized_feats)%num_dims,1); hash_feats[i] = std::make_pair(hash(quantized_feats)%num_dims,1);
} }
return hash_feats; return hash_feats;
......
...@@ -24,7 +24,7 @@ namespace dlib ...@@ -24,7 +24,7 @@ namespace dlib
INITIAL VALUE INITIAL VALUE
- size() == 0 - size() == 0
- get_num_dimensions() == 1000 - get_num_dimensions() == 1000
- get_scales() == logspace(-1,1,3) - get_hash_bin_sizes() == logspace(-1,1,3)
WHAT THIS OBJECT REPRESENTS WHAT THIS OBJECT REPRESENTS
This object is a tool for performing image feature extraction. In This object is a tool for performing image feature extraction. In
...@@ -68,30 +68,31 @@ namespace dlib ...@@ -68,30 +68,31 @@ namespace dlib
- this object will have its initial value - this object will have its initial value
!*/ !*/
void set_scales ( void set_hash_bin_sizes (
const matrix<double,1,0>& new_scales const matrix<double,1,0>& bin_sizes
); );
/*! /*!
requires requires
- new_scales.size() > 0 - bin_sizes.size() > 0
- min(bin_sizes) > 0
ensures ensures
- #get_scales() == new_scales - #get_hash_bin_sizes() == bin_sizes
!*/ !*/
const matrix<double,1,0>& get_scales ( const matrix<double,1,0> get_hash_bin_sizes (
) const; ) const;
/*! /*!
ensures ensures
- When a feature vector from BASE_FE is hashed, it is hashed into exactly - When a feature vector from BASE_FE is hashed, it is hashed into exactly
get_scales().size() hash bins. Each hash is computed as follows: get_hash_bin_sizes().size() hash bins. Each hash is computed as follows:
- First normalize the feature vector. - First normalize the feature vector.
- Then multiply it by an element of get_scales(). - Then divide it by an element of get_hash_bin_sizes().
- Then convert the resulting vector to a vector of dlib::int32. - Then convert the resulting vector to a vector of dlib::int32.
- Finally, hash the integer vector into a hash bin. - Finally, hash the integer vector into a hash bin.
- The size of the numbers in get_scales() determines how "big" the hash bins are. - The size of the numbers in get_hash_bin_sizes() determines how big the hash
A very small scale value would result in all input vectors being hashed into the bins are. A very large value would result in all input vectors being hashed
same bin, while larger scale values would result in only similar vectors into the same bin, while smaller values would result in only similar vectors
falling into the same bins. However, a scale value too large would result in falling into the same bins. However, a value too small would result in
all vectors going into different bins. In this case, the bins are too fine all vectors going into different bins. In this case, the bins are too fine
grained. grained.
!*/ !*/
...@@ -199,7 +200,7 @@ namespace dlib ...@@ -199,7 +200,7 @@ namespace dlib
ensures ensures
- hashes BASE_FE(row,col) and returns the resulting indicator vector. - hashes BASE_FE(row,col) and returns the resulting indicator vector.
- Returns a vector V such that: - Returns a vector V such that:
- V.size() == get_scales().size() - V.size() == get_hash_bin_sizes().size()
- for all valid i: 0 <= V[i].first < get_num_dimensions() - for all valid i: 0 <= V[i].first < get_num_dimensions()
- if (BASE_FE(row,col) hashes into bin B) then - if (BASE_FE(row,col) hashes into bin B) then
- V contains an element with .first == B and .second == 1 - V contains an element with .first == B and .second == 1
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment