Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
c13f46e0
Commit
c13f46e0
authored
Oct 10, 2011
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added functions for computing the convolution and cross-correlation between
two matrices.
parent
3acb55b2
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
500 additions
and
0 deletions
+500
-0
matrix.h
dlib/matrix.h
+1
-0
matrix_conv.h
dlib/matrix/matrix_conv.h
+361
-0
matrix_conv_abstract.h
dlib/matrix/matrix_conv_abstract.h
+138
-0
No files found.
dlib/matrix.h
View file @
c13f46e0
...
...
@@ -10,6 +10,7 @@
#include "matrix/matrix_assign.h"
#include "matrix/matrix_la.h"
#include "matrix/symmetric_matrix_cache.h"
#include "matrix/matrix_conv.h"
#ifdef DLIB_USE_BLAS
#include "matrix/matrix_blas_bindings.h"
...
...
dlib/matrix/matrix_conv.h
0 → 100644
View file @
c13f46e0
// Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_MATRIx_CONV_H__
#define DLIB_MATRIx_CONV_H__
#include "matrix_conv_abstract.h"
#include "matrix.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template
<
typename
M1
,
typename
M2
,
bool
flip_m2
=
false
>
struct
op_conv
{
op_conv
(
const
M1
&
m1_
,
const
M2
&
m2_
)
:
m1
(
m1_
),
m2
(
m2_
)
{
}
const
M1
&
m1
;
const
M2
&
m2
;
const
static
long
cost
=
(
M1
::
cost
+
M2
::
cost
)
*
10
;
const
static
long
NR
=
(
M1
::
NR
*
M2
::
NR
==
0
)
?
(
0
)
:
(
M1
::
NR
+
M2
::
NR
-
1
);
const
static
long
NC
=
(
M1
::
NC
*
M2
::
NC
==
0
)
?
(
0
)
:
(
M1
::
NC
+
M2
::
NC
-
1
);
typedef
typename
M1
::
type
type
;
typedef
type
const_ret_type
;
typedef
typename
M1
::
mem_manager_type
mem_manager_type
;
typedef
typename
M1
::
layout_type
layout_type
;
const_ret_type
apply
(
long
r
,
long
c
)
const
{
type
temp
=
0
;
const
long
min_rr
=
std
::
max
<
long
>
(
r
-
m2
.
nr
()
+
1
,
0
);
const
long
max_rr
=
std
::
min
<
long
>
(
m1
.
nr
()
-
1
,
r
);
const
long
min_cc
=
std
::
max
<
long
>
(
c
-
m2
.
nc
()
+
1
,
0
);
const
long
max_cc
=
std
::
min
<
long
>
(
m1
.
nc
()
-
1
,
c
);
for
(
long
rr
=
min_rr
;
rr
<=
max_rr
;
++
rr
)
{
for
(
long
cc
=
min_cc
;
cc
<=
max_cc
;
++
cc
)
{
if
(
flip_m2
)
temp
+=
m1
(
rr
,
cc
)
*
m2
(
m2
.
nr
()
-
r
+
rr
-
1
,
m2
.
nc
()
-
c
+
cc
-
1
);
else
temp
+=
m1
(
rr
,
cc
)
*
m2
(
r
-
rr
,
c
-
cc
);
}
}
return
temp
;
}
long
nr
()
const
{
return
m1
.
nr
()
+
m2
.
nr
()
-
1
;
}
long
nc
()
const
{
return
m1
.
nc
()
+
m2
.
nc
()
-
1
;
}
template
<
typename
U
>
bool
aliases
(
const
matrix_exp
<
U
>&
item
)
const
{
return
m1
.
aliases
(
item
)
||
m2
.
aliases
(
item
);
}
template
<
typename
U
>
bool
destructively_aliases
(
const
matrix_exp
<
U
>&
item
)
const
{
return
m1
.
aliases
(
item
)
||
m2
.
aliases
(
item
);
}
};
template
<
typename
M1
,
typename
M2
>
const
matrix_op
<
op_conv
<
M1
,
M2
>
>
conv
(
const
matrix_exp
<
M1
>&
m1
,
const
matrix_exp
<
M2
>&
m2
)
/*!
requires
- m1 and m2 both contain elements of the same type
ensures
- returns a matrix R such that:
- R is the convolution of m1 with m2. In particular, this function is
equivalent to performing the following in matlab: R = conv2(m1,m2).
- R::type == the same type that was in m1 and m2.
- R.nr() == m1.nr()+m2.nr()-1
- R.nc() == m1.nc()+m2.nc()-1
!*/
{
COMPILE_TIME_ASSERT
((
is_same_type
<
typename
M1
::
type
,
typename
M2
::
type
>::
value
==
true
));
typedef
op_conv
<
M1
,
M2
>
op
;
return
matrix_op
<
op
>
(
op
(
m1
.
ref
(),
m2
.
ref
()));
}
template
<
typename
M1
,
typename
M2
>
const
matrix_op
<
op_conv
<
M1
,
M2
,
true
>
>
xcorr
(
const
matrix_exp
<
M1
>&
m1
,
const
matrix_exp
<
M2
>&
m2
)
/*!
requires
- m1 and m2 both contain elements of the same type
ensures
- returns a matrix R such that:
- R is the cross-correlation of m1 with m2. In particular, this
function returns conv(m1,flip(m2)).
- R::type == the same type that was in m1 and m2.
- R.nr() == m1.nr()+m2.nr()-1
- R.nc() == m1.nc()+m2.nc()-1
!*/
{
COMPILE_TIME_ASSERT
((
is_same_type
<
typename
M1
::
type
,
typename
M2
::
type
>::
value
==
true
));
typedef
op_conv
<
M1
,
M2
,
true
>
op
;
return
matrix_op
<
op
>
(
op
(
m1
.
ref
(),
m2
.
ref
()));
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template
<
typename
M1
,
typename
M2
,
bool
flip_m2
=
false
>
struct
op_conv_same
{
op_conv_same
(
const
M1
&
m1_
,
const
M2
&
m2_
)
:
m1
(
m1_
),
m2
(
m2_
)
{
}
const
M1
&
m1
;
const
M2
&
m2
;
const
static
long
cost
=
(
M1
::
cost
+
M2
::
cost
)
*
10
;
const
static
long
NR
=
M1
::
NR
;
const
static
long
NC
=
M1
::
NC
;
typedef
typename
M1
::
type
type
;
typedef
type
const_ret_type
;
typedef
typename
M1
::
mem_manager_type
mem_manager_type
;
typedef
typename
M1
::
layout_type
layout_type
;
const_ret_type
apply
(
long
r
,
long
c
)
const
{
r
+=
m2
.
nr
()
/
2
;
c
+=
m2
.
nc
()
/
2
;
type
temp
=
0
;
const
long
min_rr
=
std
::
max
<
long
>
(
r
-
m2
.
nr
()
+
1
,
0
);
const
long
max_rr
=
std
::
min
<
long
>
(
m1
.
nr
()
-
1
,
r
);
const
long
min_cc
=
std
::
max
<
long
>
(
c
-
m2
.
nc
()
+
1
,
0
);
const
long
max_cc
=
std
::
min
<
long
>
(
m1
.
nc
()
-
1
,
c
);
for
(
long
rr
=
min_rr
;
rr
<=
max_rr
;
++
rr
)
{
for
(
long
cc
=
min_cc
;
cc
<=
max_cc
;
++
cc
)
{
if
(
flip_m2
)
temp
+=
m1
(
rr
,
cc
)
*
m2
(
m2
.
nr
()
-
r
+
rr
-
1
,
m2
.
nc
()
-
c
+
cc
-
1
);
else
temp
+=
m1
(
rr
,
cc
)
*
m2
(
r
-
rr
,
c
-
cc
);
}
}
return
temp
;
}
long
nr
()
const
{
return
m1
.
nr
();
}
long
nc
()
const
{
return
m1
.
nc
();
}
template
<
typename
U
>
bool
aliases
(
const
matrix_exp
<
U
>&
item
)
const
{
return
m1
.
aliases
(
item
)
||
m2
.
aliases
(
item
);
}
template
<
typename
U
>
bool
destructively_aliases
(
const
matrix_exp
<
U
>&
item
)
const
{
return
m1
.
aliases
(
item
)
||
m2
.
aliases
(
item
);
}
};
template
<
typename
M1
,
typename
M2
>
const
matrix_op
<
op_conv_same
<
M1
,
M2
>
>
conv_same
(
const
matrix_exp
<
M1
>&
m1
,
const
matrix_exp
<
M2
>&
m2
)
/*!
requires
- m1 and m2 both contain elements of the same type
ensures
- returns a matrix R such that:
- R is the convolution of m1 with m2. In particular, this function is
equivalent to performing the following in matlab: R = conv2(m1,m2,'same').
In particular, this means the result will have the same dimensions as m1 and will
contain the central part of the full convolution. This means conv_same(m1,m2) is
equivalent to subm(conv(m1,m2), m2.nr()/2, m2.nc()/2, m1.nr(), m1.nc()).
- R::type == the same type that was in m1 and m2.
- R.nr() == m1.nr()
- R.nc() == m1.nc()
!*/
{
COMPILE_TIME_ASSERT
((
is_same_type
<
typename
M1
::
type
,
typename
M2
::
type
>::
value
==
true
));
typedef
op_conv_same
<
M1
,
M2
>
op
;
return
matrix_op
<
op
>
(
op
(
m1
.
ref
(),
m2
.
ref
()));
}
template
<
typename
M1
,
typename
M2
>
const
matrix_op
<
op_conv_same
<
M1
,
M2
,
true
>
>
xcorr_same
(
const
matrix_exp
<
M1
>&
m1
,
const
matrix_exp
<
M2
>&
m2
)
/*!
requires
- m1 and m2 both contain elements of the same type
ensures
- returns a matrix R such that:
- R is the cross-correlation of m1 with m2. In particular, this
function returns conv_same(m1,flip(m2)).
- R::type == the same type that was in m1 and m2.
- R.nr() == m1.nr()
- R.nc() == m1.nc()
!*/
{
COMPILE_TIME_ASSERT
((
is_same_type
<
typename
M1
::
type
,
typename
M2
::
type
>::
value
==
true
));
typedef
op_conv_same
<
M1
,
M2
,
true
>
op
;
return
matrix_op
<
op
>
(
op
(
m1
.
ref
(),
m2
.
ref
()));
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template
<
typename
M1
,
typename
M2
,
bool
flip_m2
=
false
>
struct
op_conv_valid
{
op_conv_valid
(
const
M1
&
m1_
,
const
M2
&
m2_
)
:
m1
(
m1_
),
m2
(
m2_
),
nr_
(
m1
.
nr
()
-
m2
.
nr
()
+
1
),
nc_
(
m1
.
nc
()
-
m2
.
nc
()
+
1
)
{
if
(
nr_
<
0
)
nr_
=
0
;
if
(
nc_
<
0
)
nc_
=
0
;
}
const
M1
&
m1
;
const
M2
&
m2
;
long
nr_
;
long
nc_
;
const
static
long
cost
=
(
M1
::
cost
+
M2
::
cost
)
*
10
;
const
static
long
NR
=
(
M1
::
NR
*
M2
::
NR
==
0
)
?
(
0
)
:
(
M1
::
NR
-
M2
::
NR
+
1
);
const
static
long
NC
=
(
M1
::
NC
*
M2
::
NC
==
0
)
?
(
0
)
:
(
M1
::
NC
-
M2
::
NC
+
1
);
typedef
typename
M1
::
type
type
;
typedef
type
const_ret_type
;
typedef
typename
M1
::
mem_manager_type
mem_manager_type
;
typedef
typename
M1
::
layout_type
layout_type
;
const_ret_type
apply
(
long
r
,
long
c
)
const
{
r
+=
m2
.
nr
()
-
1
;
c
+=
m2
.
nc
()
-
1
;
type
temp
=
0
;
const
long
min_rr
=
std
::
max
<
long
>
(
r
-
m2
.
nr
()
+
1
,
0
);
const
long
max_rr
=
std
::
min
<
long
>
(
m1
.
nr
()
-
1
,
r
);
const
long
min_cc
=
std
::
max
<
long
>
(
c
-
m2
.
nc
()
+
1
,
0
);
const
long
max_cc
=
std
::
min
<
long
>
(
m1
.
nc
()
-
1
,
c
);
for
(
long
rr
=
min_rr
;
rr
<=
max_rr
;
++
rr
)
{
for
(
long
cc
=
min_cc
;
cc
<=
max_cc
;
++
cc
)
{
if
(
flip_m2
)
temp
+=
m1
(
rr
,
cc
)
*
m2
(
m2
.
nr
()
-
r
+
rr
-
1
,
m2
.
nc
()
-
c
+
cc
-
1
);
else
temp
+=
m1
(
rr
,
cc
)
*
m2
(
r
-
rr
,
c
-
cc
);
}
}
return
temp
;
}
long
nr
()
const
{
return
nr_
;
}
long
nc
()
const
{
return
nc_
;
}
template
<
typename
U
>
bool
aliases
(
const
matrix_exp
<
U
>&
item
)
const
{
return
m1
.
aliases
(
item
)
||
m2
.
aliases
(
item
);
}
template
<
typename
U
>
bool
destructively_aliases
(
const
matrix_exp
<
U
>&
item
)
const
{
return
m1
.
aliases
(
item
)
||
m2
.
aliases
(
item
);
}
};
template
<
typename
M1
,
typename
M2
>
const
matrix_op
<
op_conv_valid
<
M1
,
M2
>
>
conv_valid
(
const
matrix_exp
<
M1
>&
m1
,
const
matrix_exp
<
M2
>&
m2
)
/*!
requires
- m1 and m2 both contain elements of the same type
ensures
- returns a matrix R such that:
- R is the convolution of m1 with m2. In particular, this function is
equivalent to performing the following in matlab: R = conv2(m1,m2,'valid').
In particular, this means only elements of the convolution which don't require
zero padding are included in the result.
- R::type == the same type that was in m1 and m2.
- if (m1 has larger dimensions than m2) then
- R.nr() == m1.nr()-m2.nr()+1
- R.nc() == m1.nc()-m2.nc()+1
- else
- R.nr() == 0
- R.nc() == 0
!*/
{
COMPILE_TIME_ASSERT
((
is_same_type
<
typename
M1
::
type
,
typename
M2
::
type
>::
value
==
true
));
typedef
op_conv_valid
<
M1
,
M2
>
op
;
return
matrix_op
<
op
>
(
op
(
m1
.
ref
(),
m2
.
ref
()));
}
template
<
typename
M1
,
typename
M2
>
const
matrix_op
<
op_conv_valid
<
M1
,
M2
,
true
>
>
xcorr_valid
(
const
matrix_exp
<
M1
>&
m1
,
const
matrix_exp
<
M2
>&
m2
)
/*!
requires
- m1 and m2 both contain elements of the same type
ensures
- returns a matrix R such that:
- R is the cross-correlation of m1 with m2. In particular, this
function returns conv_valid(m1,flip(m2)).
- R::type == the same type that was in m1 and m2.
- if (m1 has larger dimensions than m2) then
- R.nr() == m1.nr()-m2.nr()+1
- R.nc() == m1.nc()-m2.nc()+1
- else
- R.nr() == 0
- R.nc() == 0
!*/
{
COMPILE_TIME_ASSERT
((
is_same_type
<
typename
M1
::
type
,
typename
M2
::
type
>::
value
==
true
));
typedef
op_conv_valid
<
M1
,
M2
,
true
>
op
;
return
matrix_op
<
op
>
(
op
(
m1
.
ref
(),
m2
.
ref
()));
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MATRIx_CONV_H__
dlib/matrix/matrix_conv_abstract.h
0 → 100644
View file @
c13f46e0
// Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_MATRIx_CONV_ABSTRACT_H__
#ifdef DLIB_MATRIx_CONV_ABSTRACT_H__
#include "matrix_abstract.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
const
matrix_exp
conv
(
const
matrix_exp
&
m1
,
const
matrix_exp
&
m2
);
/*!
requires
- m1 and m2 both contain elements of the same type
ensures
- returns a matrix R such that:
- R is the convolution of m1 with m2. In particular, this function is
equivalent to performing the following in matlab: R = conv2(m1,m2).
- R::type == the same type that was in m1 and m2.
- R.nr() == m1.nr()+m2.nr()-1
- R.nc() == m1.nc()+m2.nc()-1
!*/
// ----------------------------------------------------------------------------------------
const
matrix_exp
xcorr
(
const
matrix_exp
&
m1
,
const
matrix_exp
&
m2
);
/*!
requires
- m1 and m2 both contain elements of the same type
ensures
- returns a matrix R such that:
- R is the cross-correlation of m1 with m2. In particular, this
function returns conv(m1,flip(m2)).
- R::type == the same type that was in m1 and m2.
- R.nr() == m1.nr()+m2.nr()-1
- R.nc() == m1.nc()+m2.nc()-1
!*/
// ----------------------------------------------------------------------------------------
const
matrix_exp
conv_same
(
const
matrix_exp
&
m1
,
const
matrix_exp
&
m2
);
/*!
requires
- m1 and m2 both contain elements of the same type
ensures
- returns a matrix R such that:
- R is the convolution of m1 with m2. In particular, this function is
equivalent to performing the following in matlab: R = conv2(m1,m2,'same').
In particular, this means the result will have the same dimensions as m1 and will
contain the central part of the full convolution. This means conv_same(m1,m2) is
equivalent to subm(conv(m1,m2), m2.nr()/2, m2.nc()/2, m1.nr(), m1.nc()).
- R::type == the same type that was in m1 and m2.
- R.nr() == m1.nr()
- R.nc() == m1.nc()
!*/
// ----------------------------------------------------------------------------------------
const
matrix_exp
xcorr_same
(
const
matrix_exp
&
m1
,
const
matrix_exp
&
m2
);
/*!
requires
- m1 and m2 both contain elements of the same type
ensures
- returns a matrix R such that:
- R is the cross-correlation of m1 with m2. In particular, this
function returns conv_same(m1,flip(m2)).
- R::type == the same type that was in m1 and m2.
- R.nr() == m1.nr()
- R.nc() == m1.nc()
!*/
// ----------------------------------------------------------------------------------------
const
matrix_exp
conv_valid
(
const
matrix_exp
&
m1
,
const
matrix_exp
&
m2
);
/*!
requires
- m1 and m2 both contain elements of the same type
ensures
- returns a matrix R such that:
- R is the convolution of m1 with m2. In particular, this function is
equivalent to performing the following in matlab: R = conv2(m1,m2,'valid').
In particular, this means only elements of the convolution which don't require
zero padding are included in the result.
- R::type == the same type that was in m1 and m2.
- if (m1 has larger dimensions than m2) then
- R.nr() == m1.nr()-m2.nr()+1
- R.nc() == m1.nc()-m2.nc()+1
- else
- R.nr() == 0
- R.nc() == 0
!*/
// ----------------------------------------------------------------------------------------
const
matrix_exp
xcorr_valid
(
const
matrix_exp
&
m1
,
const
matrix_exp
&
m2
);
/*!
requires
- m1 and m2 both contain elements of the same type
ensures
- returns a matrix R such that:
- R is the cross-correlation of m1 with m2. In particular, this
function returns conv_valid(m1,flip(m2)).
- R::type == the same type that was in m1 and m2.
- if (m1 has larger dimensions than m2) then
- R.nr() == m1.nr()-m2.nr()+1
- R.nc() == m1.nc()-m2.nc()+1
- else
- R.nr() == 0
- R.nc() == 0
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MATRIx_CONV_ABSTRACT_H__
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment