Commit c3f2c1df authored by Davis King's avatar Davis King

Added a python interface to find_max_global()

parent e302a61e
......@@ -30,6 +30,7 @@ set(python_srcs
src/correlation_tracker.cpp
src/face_recognition.cpp
src/cnn_face_detector.cpp
src/global_optimization.cpp
)
# Only add the GUI module if requested
......
......@@ -20,6 +20,7 @@ void bind_shape_predictors();
void bind_correlation_tracker();
void bind_face_recognition();
void bind_cnn_face_detection();
void bind_global_optimization();
#ifndef DLIB_NO_GUI_SUPPORT
void bind_gui();
......@@ -53,6 +54,7 @@ BOOST_PYTHON_MODULE(dlib)
bind_correlation_tracker();
bind_face_recognition();
bind_cnn_face_detection();
bind_global_optimization();
#ifndef DLIB_NO_GUI_SUPPORT
bind_gui();
#endif
......
// Copyright (C) 2017 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <boost/shared_ptr.hpp>
#include <dlib/global_optimization.h>
#include <dlib/matrix.h>
using namespace dlib;
using namespace std;
using namespace boost::python;
// ----------------------------------------------------------------------------------------
std::vector<bool> list_to_bool_vector(
const boost::python::list& l
)
{
std::vector<bool> result(len(l));
for (long i = 0; i < result.size(); ++i)
{
result[i] = extract<bool>(l[i]);
cout << "bool val: " << result[i] << endl;
}
return result;
}
matrix<double,0,1> list_to_mat(
const boost::python::list& l
)
{
matrix<double,0,1> result(len(l));
for (long i = 0; i < result.size(); ++i)
result(i) = extract<double>(l[i]);
return result;
}
boost::python::list mat_to_list (
const matrix<double,0,1>& m
)
{
boost::python::list l;
for (long i = 0; i < m.size(); ++i)
l.append(m(i));
return l;
}
size_t num_function_arguments(object f)
{
return boost::python::extract<std::size_t>(f.attr("func_code").attr("co_argcount"));
}
double call_func(object f, const matrix<double,0,1>& args)
{
const auto num = num_function_arguments(f);
DLIB_CASSERT(num == args.size(),
"The function being optimized takes a number of arguments that doesn't agree with the size of the bounds lists you provided to find_max_global()");
DLIB_CASSERT(0 < num && num < 15, "Functions being optimized must take between 1 and 15 scalar arguments.");
#define CALL_WITH_N_ARGS(N) case N: return extract<double>(dlib::gopt_impl::_cwv(f,args,typename make_compile_time_integer_range<N>::type()));
switch (num)
{
CALL_WITH_N_ARGS(1)
CALL_WITH_N_ARGS(2)
CALL_WITH_N_ARGS(3)
CALL_WITH_N_ARGS(4)
CALL_WITH_N_ARGS(5)
CALL_WITH_N_ARGS(6)
CALL_WITH_N_ARGS(7)
CALL_WITH_N_ARGS(8)
CALL_WITH_N_ARGS(9)
CALL_WITH_N_ARGS(10)
CALL_WITH_N_ARGS(11)
CALL_WITH_N_ARGS(12)
CALL_WITH_N_ARGS(13)
CALL_WITH_N_ARGS(14)
CALL_WITH_N_ARGS(15)
default:
DLIB_CASSERT(false, "oops");
break;
}
}
// ----------------------------------------------------------------------------------------
boost::python::tuple py_find_max_global (
object f,
boost::python::list bound1,
boost::python::list bound2,
boost::python::list is_integer_variable,
unsigned long num_function_calls,
double solver_epsilon = 0
)
{
DLIB_CASSERT(len(bound1) == len(bound2));
DLIB_CASSERT(len(bound1) == len(is_integer_variable));
auto func = [&](const matrix<double,0,1>& x)
{
return call_func(f, x);
};
auto result = find_max_global(func, list_to_mat(bound1), list_to_mat(bound2),
list_to_bool_vector(is_integer_variable), max_function_calls(num_function_calls),
solver_epsilon);
return boost::python::make_tuple(mat_to_list(result.x),result.y);
}
boost::python::tuple py_find_max_global2 (
object f,
boost::python::list bound1,
boost::python::list bound2,
unsigned long num_function_calls,
double solver_epsilon = 0
)
{
DLIB_CASSERT(len(bound1) == len(bound2));
auto func = [&](const matrix<double,0,1>& x)
{
return call_func(f, x);
};
auto result = find_max_global(func, list_to_mat(bound1), list_to_mat(bound2), max_function_calls(num_function_calls), solver_epsilon);
return boost::python::make_tuple(mat_to_list(result.x),result.y);
}
// ----------------------------------------------------------------------------------------
void bind_global_optimization()
{
/*!
requires
- len(bound1) == len(bound2) == len(is_integer_variable)
- for all valid i: bound1[i] != bound2[i]
- solver_epsilon >= 0
- f() is a real valued multi-variate function. It must take scalar real
numbers as its arguments and the number of arguments must be len(bound1).
ensures
- This function performs global optimization on the given f() function.
The goal is to maximize the following objective function:
f(x)
subject to the constraints:
min(bound1[i],bound2[i]) <= x[i] <= max(bound1[i],bound2[i])
if (is_integer_variable[i]) then x[i] is an integer.
- find_max_global() runs until it has called f() num_function_calls times.
Then it returns the best x it has found along with the corresponding output
of f(). That is, it returns (best_x_seen,f(best_x_seen)). Here best_x_seen
is a list containing the best arguments to f() this function has found.
- find_max_global() uses a global optimization method based on a combination of
non-parametric global function modeling and quadratic trust region modeling
to efficiently find a global maximizer. It usually does a good job with a
relatively small number of calls to f(). For more information on how it
works read the documentation for dlib's global_function_search object.
However, one notable element is the solver epsilon, which you can adjust.
The search procedure will only attempt to find a global maximizer to at most
solver_epsilon accuracy. Once a local maximizer is found to that accuracy
the search will focus entirely on finding other maxima elsewhere rather than
on further improving the current local optima found so far. That is, once a
local maxima is identified to about solver_epsilon accuracy, the algorithm
will spend all its time exploring the function to find other local maxima to
investigate. An epsilon of 0 means it will keep solving until it reaches
full floating point precision. Larger values will cause it to switch to pure
global exploration sooner and therefore might be more effective if your
objective function has many local maxima and you don't care about a super
high precision solution.
- Any variables that satisfy the following conditions are optimized on a log-scale:
- The lower bound on the variable is > 0
- The ratio of the upper bound to lower bound is > 1000
- The variable is not an integer variable
We do this because it's common to optimize machine learning models that have
parameters with bounds in a range such as [1e-5 to 1e10] (e.g. the SVM C
parameter) and it's much more appropriate to optimize these kinds of
variables on a log scale. So we transform them by applying log() to
them and then undo the transform via exp() before invoking the function
being optimized. Therefore, this transformation is invisible to the user
supplied functions. In most cases, it improves the efficiency of the
optimizer.
!*/
using boost::python::arg;
{
def("find_max_global", &py_find_max_global,
"requires \n\
- len(bound1) == len(bound2) == len(is_integer_variable) \n\
- for all valid i: bound1[i] != bound2[i] \n\
- solver_epsilon >= 0 \n\
- f() is a real valued multi-variate function. It must take scalar real \n\
numbers as its arguments and the number of arguments must be len(bound1). \n\
ensures \n\
- This function performs global optimization on the given f() function. \n\
The goal is to maximize the following objective function: \n\
f(x) \n\
subject to the constraints: \n\
min(bound1[i],bound2[i]) <= x[i] <= max(bound1[i],bound2[i]) \n\
if (is_integer_variable[i]) then x[i] is an integer. \n\
- find_max_global() runs until it has called f() num_function_calls times. \n\
Then it returns the best x it has found along with the corresponding output \n\
of f(). That is, it returns (best_x_seen,f(best_x_seen)). Here best_x_seen \n\
is a list containing the best arguments to f() this function has found. \n\
- find_max_global() uses a global optimization method based on a combination of \n\
non-parametric global function modeling and quadratic trust region modeling \n\
to efficiently find a global maximizer. It usually does a good job with a \n\
relatively small number of calls to f(). For more information on how it \n\
works read the documentation for dlib's global_function_search object. \n\
However, one notable element is the solver epsilon, which you can adjust. \n\
\n\
The search procedure will only attempt to find a global maximizer to at most \n\
solver_epsilon accuracy. Once a local maximizer is found to that accuracy \n\
the search will focus entirely on finding other maxima elsewhere rather than \n\
on further improving the current local optima found so far. That is, once a \n\
local maxima is identified to about solver_epsilon accuracy, the algorithm \n\
will spend all its time exploring the function to find other local maxima to \n\
investigate. An epsilon of 0 means it will keep solving until it reaches \n\
full floating point precision. Larger values will cause it to switch to pure \n\
global exploration sooner and therefore might be more effective if your \n\
objective function has many local maxima and you don't care about a super \n\
high precision solution. \n\
- Any variables that satisfy the following conditions are optimized on a log-scale: \n\
- The lower bound on the variable is > 0 \n\
- The ratio of the upper bound to lower bound is > 1000 \n\
- The variable is not an integer variable \n\
We do this because it's common to optimize machine learning models that have \n\
parameters with bounds in a range such as [1e-5 to 1e10] (e.g. the SVM C \n\
parameter) and it's much more appropriate to optimize these kinds of \n\
variables on a log scale. So we transform them by applying log() to \n\
them and then undo the transform via exp() before invoking the function \n\
being optimized. Therefore, this transformation is invisible to the user \n\
supplied functions. In most cases, it improves the efficiency of the \n\
optimizer."
,
(arg("f"), arg("bound1"), arg("bound2"), arg("is_integer_variable"), arg("num_function_calls"), arg("solver_epsilon")=0)
);
}
{
def("find_max_global", &py_find_max_global2,
"This function simply calls the other version of find_max_global() with is_integer_variable set to False for all variables.",
(arg("f"), arg("bound1"), arg("bound2"), arg("num_function_calls"), arg("solver_epsilon")=0)
);
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment