Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
c4e4cd00
Commit
c4e4cd00
authored
May 30, 2015
by
Davis King
Browse files
Options
Browse Files
Download
Plain Diff
merged
parents
d5170a39
eadb9ee1
Show whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
944 additions
and
0 deletions
+944
-0
control.h
dlib/control.h
+1
-0
mpc.h
dlib/control/mpc.h
+331
-0
mpc_abstract.h
dlib/control/mpc_abstract.h
+267
-0
CMakeLists.txt
dlib/test/CMakeLists.txt
+1
-0
makefile
dlib/test/makefile
+1
-0
mpc.cpp
dlib/test/mpc.cpp
+324
-0
optimization.xml
docs/docs/optimization.xml
+18
-0
term_index.xml
docs/docs/term_index.xml
+1
-0
No files found.
dlib/control.h
View file @
c4e4cd00
...
...
@@ -4,6 +4,7 @@
#define DLIB_CONTRoL_
#include "control/lspi.h"
#include "control/mpc.h"
#endif // DLIB_CONTRoL_
...
...
dlib/control/mpc.h
0 → 100644
View file @
c4e4cd00
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_MPC_Hh_
#define DLIB_MPC_Hh_
#include "mpc_abstract.h"
#include "../matrix.h"
#include "../algs.h"
namespace
dlib
{
template
<
long
S_
,
long
I_
,
unsigned
long
horizon_
>
class
mpc
{
public
:
const
static
long
S
=
S_
;
const
static
long
I
=
I_
;
const
static
unsigned
long
horizon
=
horizon_
;
mpc
(
)
{
A
=
0
;
B
=
0
;
C
=
0
;
Q
=
0
;
R
=
0
;
lower
=
0
;
upper
=
0
;
max_iterations
=
0
;
eps
=
0
.
01
;
for
(
unsigned
long
i
=
0
;
i
<
horizon
;
++
i
)
{
target
[
i
].
set_size
(
A
.
nr
());
target
[
i
]
=
0
;
controls
[
i
].
set_size
(
B
.
nc
());
controls
[
i
]
=
0
;
}
lambda
=
0
;
}
mpc
(
const
matrix
<
double
,
S
,
S
>&
A_
,
const
matrix
<
double
,
S
,
I
>&
B_
,
const
matrix
<
double
,
S
,
1
>&
C_
,
const
matrix
<
double
,
S
,
1
>&
Q_
,
const
matrix
<
double
,
I
,
1
>&
R_
,
const
matrix
<
double
,
I
,
1
>&
lower_
,
const
matrix
<
double
,
I
,
1
>&
upper_
)
:
A
(
A_
),
B
(
B_
),
C
(
C_
),
Q
(
Q_
),
R
(
R_
),
lower
(
lower_
),
upper
(
upper_
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
A
.
nr
()
>
0
&&
B
.
nc
()
>
0
,
"
\t
mpc::mpc()"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
A.nr(): "
<<
A
.
nr
()
<<
"
\n\t
B.nc(): "
<<
B
.
nc
()
);
DLIB_ASSERT
(
A
.
nr
()
==
A
.
nc
()
&&
A
.
nr
()
==
B
.
nr
()
&&
A
.
nr
()
==
C
.
nr
()
&&
A
.
nr
()
==
Q
.
nr
(),
"
\t
mpc::mpc()"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
A.nr(): "
<<
A
.
nr
()
<<
"
\n\t
A.nc(): "
<<
A
.
nc
()
<<
"
\n\t
B.nr(): "
<<
B
.
nr
()
<<
"
\n\t
C.nr(): "
<<
C
.
nr
()
<<
"
\n\t
Q.nr(): "
<<
Q
.
nr
()
);
DLIB_ASSERT
(
B
.
nc
()
==
R
.
nr
()
&&
B
.
nc
()
==
lower
.
nr
()
&&
B
.
nc
()
==
upper
.
nr
()
,
"
\t
mpc::mpc()"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
B.nr(): "
<<
B
.
nr
()
<<
"
\n\t
B.nc(): "
<<
B
.
nc
()
<<
"
\n\t
lower.nr(): "
<<
lower
.
nr
()
<<
"
\n\t
upper.nr(): "
<<
upper
.
nr
()
);
DLIB_ASSERT
(
min
(
Q
)
>=
0
&&
min
(
R
)
>
0
&&
min
(
upper
-
lower
)
>=
0
,
"
\t
mpc::mpc()"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
min(Q): "
<<
min
(
Q
)
<<
"
\n\t
min(R): "
<<
min
(
R
)
<<
"
\n\t
min(upper-lower): "
<<
min
(
upper
-
lower
)
);
max_iterations
=
10000
;
eps
=
0
.
01
;
for
(
unsigned
long
i
=
0
;
i
<
horizon
;
++
i
)
{
target
[
i
].
set_size
(
A
.
nr
());
target
[
i
]
=
0
;
controls
[
i
].
set_size
(
B
.
nc
());
controls
[
i
]
=
0
;
}
// Bound the maximum eigenvalue of the hessian by computing the trace of the
// hessian matrix.
lambda
=
sum
(
R
)
*
horizon
;
matrix
<
double
,
S
,
S
>
temp
=
diagm
(
Q
);
for
(
unsigned
long
c
=
0
;
c
<
horizon
;
++
c
)
{
lambda
+=
trans
(
B
)
*
temp
*
B
;
temp
=
trans
(
A
)
*
temp
*
A
+
diagm
(
Q
);
}
}
const
matrix
<
double
,
S
,
S
>&
get_A
(
)
const
{
return
A
;
}
const
matrix
<
double
,
S
,
I
>&
get_B
(
)
const
{
return
B
;
}
const
matrix
<
double
,
S
,
1
>&
get_C
(
)
const
{
return
C
;
}
const
matrix
<
double
,
S
,
1
>&
get_Q
(
)
const
{
return
Q
;
}
const
matrix
<
double
,
I
,
1
>&
get_R
(
)
const
{
return
R
;
}
const
matrix
<
double
,
I
,
1
>&
get_lower_constraints
(
)
const
{
return
lower
;
}
const
matrix
<
double
,
I
,
1
>&
get_upper_constraints
(
)
const
{
return
upper
;
}
void
set_target
(
const
matrix
<
double
,
S
,
1
>&
val
,
const
unsigned
long
time
)
{
DLIB_ASSERT
(
time
<
horizon
,
"
\t
void mpc::set_target(eps_)"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
time: "
<<
time
<<
"
\n\t
horizon: "
<<
horizon
);
target
[
time
]
=
val
;
}
void
set_last_target
(
const
matrix
<
double
,
S
,
1
>&
val
)
{
set_target
(
val
,
horizon
-
1
);
}
const
matrix
<
double
,
S
,
1
>&
get_target
(
const
unsigned
long
time
)
const
{
// make sure requires clause is not broken
DLIB_ASSERT
(
time
<
horizon
,
"
\t
matrix mpc::get_target(eps_)"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
time: "
<<
time
<<
"
\n\t
horizon: "
<<
horizon
);
return
target
[
time
];
}
unsigned
long
get_max_iterations
(
)
const
{
return
max_iterations
;
}
void
set_max_iterations
(
unsigned
long
max_iter
)
{
max_iterations
=
max_iter
;
}
void
set_epsilon
(
double
eps_
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
eps_
>
0
,
"
\t
void mpc::set_epsilon(eps_)"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
eps_: "
<<
eps_
);
eps
=
eps_
;
}
double
get_epsilon
(
)
const
{
return
eps
;
}
matrix
<
double
,
I
,
1
>
operator
()
(
const
matrix
<
double
,
S
,
1
>&
current_state
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
min
(
R
)
>
0
&&
A
.
nr
()
==
current_state
.
size
(),
"
\t
matrix mpc::operator(current_state)"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
min(R): "
<<
min
(
R
)
<<
"
\n\t
A.nr(): "
<<
A
.
nr
()
<<
"
\n\t
current_state.size(): "
<<
current_state
.
size
()
);
// Shift the inputs over by one time step so we can use them to warm start the
// optimizer.
for
(
unsigned
long
i
=
1
;
i
<
horizon
;
++
i
)
controls
[
i
-
1
]
=
controls
[
i
];
solve_linear_mpc
(
current_state
);
for
(
unsigned
long
i
=
1
;
i
<
horizon
;
++
i
)
target
[
i
-
1
]
=
target
[
i
];
return
controls
[
0
];
}
private
:
// These temporary variables here just to avoid reallocating them on each call to
// operator().
matrix
<
double
,
S
,
1
>
M
[
horizon
];
matrix
<
double
,
I
,
1
>
MM
[
horizon
];
matrix
<
double
,
I
,
1
>
df
[
horizon
];
matrix
<
double
,
I
,
1
>
v
[
horizon
];
matrix
<
double
,
I
,
1
>
v_old
[
horizon
];
void
solve_linear_mpc
(
const
matrix
<
double
,
S
,
1
>&
initial_state
)
{
// make it so MM == trans(K)*Q*(M-target)
M
[
0
]
=
A
*
initial_state
+
C
;
for
(
unsigned
long
i
=
1
;
i
<
horizon
;
++
i
)
M
[
i
]
=
A
*
M
[
i
-
1
]
+
C
;
for
(
unsigned
long
i
=
0
;
i
<
horizon
;
++
i
)
M
[
i
]
=
diagm
(
Q
)
*
(
M
[
i
]
-
target
[
i
]);
for
(
long
i
=
(
long
)
horizon
-
2
;
i
>=
0
;
--
i
)
M
[
i
]
+=
trans
(
A
)
*
M
[
i
+
1
];
for
(
unsigned
long
i
=
0
;
i
<
horizon
;
++
i
)
MM
[
i
]
=
trans
(
B
)
*
M
[
i
];
for
(
unsigned
long
i
=
0
;
i
<
horizon
;
++
i
)
v
[
i
]
=
controls
[
i
];
unsigned
long
iter
=
0
;
for
(;
iter
<
max_iterations
;
++
iter
)
{
// compute current gradient and put it into df.
// df == H*controls + MM;
M
[
0
]
=
B
*
controls
[
0
];
for
(
unsigned
long
i
=
1
;
i
<
horizon
;
++
i
)
M
[
i
]
=
A
*
M
[
i
-
1
]
+
B
*
controls
[
i
];
for
(
unsigned
long
i
=
0
;
i
<
horizon
;
++
i
)
M
[
i
]
=
diagm
(
Q
)
*
M
[
i
];
for
(
long
i
=
(
long
)
horizon
-
2
;
i
>=
0
;
--
i
)
M
[
i
]
+=
trans
(
A
)
*
M
[
i
+
1
];
for
(
unsigned
long
i
=
0
;
i
<
horizon
;
++
i
)
df
[
i
]
=
MM
[
i
]
+
trans
(
B
)
*
M
[
i
]
+
diagm
(
R
)
*
controls
[
i
];
// Check the stopping condition, which is the magnitude of the largest element
// of the gradient.
double
max_df
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
horizon
;
++
i
)
{
for
(
long
j
=
0
;
j
<
controls
[
i
].
size
();
++
j
)
{
// if this variable isn't an active constraint then we care about it's
// derivative.
if
(
!
((
controls
[
i
](
j
)
<=
lower
(
j
)
&&
df
[
i
](
j
)
>
0
)
||
(
controls
[
i
](
j
)
>=
upper
(
j
)
&&
df
[
i
](
j
)
<
0
)))
{
max_df
=
std
::
max
(
max_df
,
std
::
abs
(
df
[
i
](
j
)));
}
}
}
if
(
max_df
<
eps
)
break
;
// take a step based on the gradient
for
(
unsigned
long
i
=
0
;
i
<
horizon
;
++
i
)
{
v_old
[
i
]
=
v
[
i
];
v
[
i
]
=
clamp
(
controls
[
i
]
-
1
.
0
/
lambda
*
df
[
i
],
lower
,
upper
);
controls
[
i
]
=
clamp
(
v
[
i
]
+
(
std
::
sqrt
(
lambda
)
-
1
)
/
(
std
::
sqrt
(
lambda
)
+
1
)
*
(
v
[
i
]
-
v_old
[
i
]),
lower
,
upper
);
}
}
}
unsigned
long
max_iterations
;
double
eps
;
matrix
<
double
,
S
,
S
>
A
;
matrix
<
double
,
S
,
I
>
B
;
matrix
<
double
,
S
,
1
>
C
;
matrix
<
double
,
S
,
1
>
Q
;
matrix
<
double
,
I
,
1
>
R
;
matrix
<
double
,
I
,
1
>
lower
;
matrix
<
double
,
I
,
1
>
upper
;
matrix
<
double
,
S
,
1
>
target
[
horizon
];
double
lambda
;
// abound on the largest eigenvalue of the hessian matrix.
matrix
<
double
,
I
,
1
>
controls
[
horizon
];
};
}
#endif // DLIB_MPC_Hh_
dlib/control/mpc_abstract.h
0 → 100644
View file @
c4e4cd00
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_MPC_ABSTRACT_Hh_
#ifdef DLIB_MPC_ABSTRACT_Hh_
#include "../matrix.h"
namespace
dlib
{
template
<
long
S_
,
long
I_
,
unsigned
long
horizon_
>
class
mpc
{
/*!
REQUIREMENTS ON horizon_
horizon_ > 0
REQUIREMENTS ON S_
S_ >= 0
REQUIREMENTS ON I_
I_ >= 0
WHAT THIS OBJECT REPRESENTS
This object implements a linear model predictive controller. To explain
what that means, suppose you have some process you want to control and the
process dynamics are described by the linear equation:
x_{i+1} = A*x_i + B*u_i + C
That is, the next state the system goes into is a linear function of its
current state (x_i) and the current control (u_i) plus some constant bias
or disturbance.
A model predictive controller can find the control (u) you should apply to
drive the state (x) to some reference value, or alternatively to make the
state track some reference time-varying sequence. It does this by
simulating the process for horizon_ time steps and selecting the control
that leads to the best performance over the next horizon_ steps.
To be precise, each time you ask this object for a control, it solves the
following quadratic program:
min sum_i trans(x_i-target_i)*Q*(x_i-target_i) + trans(u_i)*R*u_i
x_i,u_i
such that: x_0 == current_state
x_{i+1} == A*x_i + B*u_i + C
lower <= u_i <= upper
0 <= i < horizon_
and reports u_0 as the control you should take given that you are currently
in current_state. Q and R are user supplied matrices that define how we
penalize variations away from the target state as well as how much we want
to avoid generating large control signals.
Finally, the algorithm we use to solve this quadratic program is based
largely on the method described in:
A Fast Gradient method for embedded linear predictive control (2011)
by Markus Kogel and Rolf Findeisen
!*/
public
:
const
static
long
S
=
S_
;
const
static
long
I
=
I_
;
const
static
unsigned
long
horizon
=
horizon_
;
mpc
(
);
/*!
ensures
- #get_max_iterations() == 0
- The A,B,C,Q,R,lower, and upper parameter matrices are filled with zeros.
Therefore, to use this object you must initialize it via the constructor
that supplies these parameters.
!*/
mpc
(
const
matrix
<
double
,
S
,
S
>&
A
,
const
matrix
<
double
,
S
,
I
>&
B
,
const
matrix
<
double
,
S
,
1
>&
C
,
const
matrix
<
double
,
S
,
1
>&
Q
,
const
matrix
<
double
,
I
,
1
>&
R
,
const
matrix
<
double
,
I
,
1
>&
lower
,
const
matrix
<
double
,
I
,
1
>&
upper
);
/*!
requires
- A.nr() > 0
- B.nc() > 0
- A.nr() == A.nc() == B.nr() == C.nr() == Q.nr()
- B.nc() == R.nr() == lower.nr() == upper.nr()
- min(Q) >= 0
- min(R) > 0
- min(upper-lower) >= 0
ensures
- #get_A() == A
- #get_B() == B
- #get_C() == C
- #get_Q() == Q
- #get_R() == R
- #get_lower_constraints() == lower
- #get_upper_constraints() == upper
- for all valid i:
- get_target(i) == a vector of all zeros
- get_target(i).size() == A.nr()
- #get_max_iterations() == 10000
- #get_epsilon() == 0.01
!*/
const
matrix
<
double
,
S
,
S
>&
get_A
(
)
const
;
/*!
ensures
- returns the A matrix from the quadratic program defined above.
!*/
const
matrix
<
double
,
S
,
I
>&
get_B
(
)
const
;
/*!
ensures
- returns the B matrix from the quadratic program defined above.
!*/
const
matrix
<
double
,
S
,
1
>&
get_C
(
)
const
;
/*!
ensures
- returns the C matrix from the quadratic program defined above.
!*/
const
matrix
<
double
,
S
,
1
>&
get_Q
(
)
const
;
/*!
ensures
- returns the diagonal of the Q matrix from the quadratic program defined
above.
!*/
const
matrix
<
double
,
I
,
1
>&
get_R
(
)
const
;
/*!
ensures
- returns the diagonal of the R matrix from the quadratic program defined
above.
!*/
const
matrix
<
double
,
I
,
1
>&
get_lower_constraints
(
)
const
;
/*!
ensures
- returns the lower matrix from the quadratic program defined above. All
controls generated by this object will have values no less than this
lower bound. That is, any control u will satisfy min(u-lower) >= 0.
!*/
const
matrix
<
double
,
I
,
1
>&
get_upper_constraints
(
)
const
;
/*!
ensures
- returns the upper matrix from the quadratic program defined above. All
controls generated by this object will have values no larger than this
upper bound. That is, any control u will satisfy min(upper-u) >= 0.
!*/
const
matrix
<
double
,
S
,
1
>&
get_target
(
const
unsigned
long
time
)
const
;
/*!
requires
- time < horizon
ensures
- This object will try to find the control sequence that results in the
process obtaining get_target(time) state at the indicated time. Note
that the next time instant after "right now" is time 0.
!*/
void
set_target
(
const
matrix
<
double
,
S
,
1
>&
val
,
const
unsigned
long
time
);
/*!
requires
- time < horizon
ensures
- #get_target(time) == val
!*/
void
set_last_target
(
const
matrix
<
double
,
S
,
1
>&
val
);
/*!
ensures
- performs: set_target(val, horizon-1)
!*/
unsigned
long
get_max_iterations
(
)
const
;
/*!
ensures
- When operator() is called it solves an optimization problem to
get_epsilon() precision to determine the next control action. In
particular, we run the optimizer until the magnitude of each element of
the gradient vector is less than get_epsilon() or until
get_max_iterations() solver iterations have been executed.
!*/
void
set_max_iterations
(
unsigned
long
max_iter
);
/*!
ensures
- #get_max_iterations() == max_iter
!*/
void
set_epsilon
(
double
eps
);
/*!
requires
- eps > 0
ensures
- #get_epsilon() == eps
!*/
double
get_epsilon
(
)
const
;
/*!
ensures
- When operator() is called it solves an optimization problem to
get_epsilon() precision to determine the next control action. In
particular, we run the optimizer until the magnitude of each element of
the gradient vector is less than get_epsilon() or until
get_max_iterations() solver iterations have been executed. This means
that smaller epsilon values will give more accurate outputs but may take
longer to compute.
!*/
matrix
<
double
,
I
,
1
>
operator
()
(
const
matrix
<
double
,
S
,
1
>&
current_state
);
/*!
requires
- min(R) > 0
- A.nr() == current_state.size()
ensures
- Solves the model predictive control problem defined by the arguments to
this objects constructor, assuming that the starting state is given by
current_state. Then we return the control that should be taken in the
current state that best optimizes the quadratic objective function
defined above.
- We also shift over the target states so that you only need to update the
last one (if you are using non-zero target states) via a call to
set_last_target()). In particular, for all valid t, it will be the case
that:
- #get_target(t) == get_target(t+1)
- #get_target(horizon-1) == get_target(horizon-1)
!*/
};
}
#endif // DLIB_MPC_ABSTRACT_Hh_
dlib/test/CMakeLists.txt
View file @
c4e4cd00
...
...
@@ -84,6 +84,7 @@ set (tests
md5.cpp
member_function_pointer.cpp
metaprogramming.cpp
mpc.cpp
multithreaded_object.cpp
numerical_integration.cpp
object_detector.cpp
...
...
dlib/test/makefile
View file @
c4e4cd00
...
...
@@ -99,6 +99,7 @@ SRC += max_sum_submatrix.cpp
SRC
+=
md5.cpp
SRC
+=
member_function_pointer.cpp
SRC
+=
metaprogramming.cpp
SRC
+=
mpc.cpp
SRC
+=
multithreaded_object.cpp
SRC
+=
numerical_integration.cpp
SRC
+=
object_detector.cpp
...
...
dlib/test/mpc.cpp
0 → 100644
View file @
c4e4cd00
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <string>
#include <sstream>
#include <dlib/control.h>
#include "tester.h"
namespace
{
using
namespace
test
;
using
namespace
std
;
using
namespace
dlib
;
logger
dlog
(
"test.mpc"
);
template
<
typename
EXP1
,
typename
EXP2
,
typename
T
,
long
NR
,
long
NC
,
typename
MM
,
typename
L
>
unsigned
long
solve_qp_box_using_smo
(
const
matrix_exp
<
EXP1
>&
_Q
,
const
matrix_exp
<
EXP2
>&
_b
,
matrix
<
T
,
NR
,
NC
,
MM
,
L
>&
alpha
,
matrix
<
T
,
NR
,
NC
,
MM
,
L
>&
lower
,
matrix
<
T
,
NR
,
NC
,
MM
,
L
>&
upper
,
T
eps
,
unsigned
long
max_iter
)
/*!
ensures
- solves: 0.5*trans(x)*Q*x + trans(b)*x where x is box constrained.
!*/
{
const_temp_matrix
<
EXP1
>
Q
(
_Q
);
const_temp_matrix
<
EXP2
>
b
(
_b
);
//cout << "IN QP SOLVER" << endl;
//cout << "max eig: " << max(real_eigenvalues(Q)) << endl;
//cout << "min eig: " << min(real_eigenvalues(Q)) << endl;
//cout << "Q: \n" << Q << endl;
//cout << "b: \n" << b << endl;
// make sure requires clause is not broken
DLIB_ASSERT
(
Q
.
nr
()
==
Q
.
nc
()
&&
alpha
.
size
()
==
lower
.
size
()
&&
alpha
.
size
()
==
upper
.
size
()
&&
is_col_vector
(
b
)
&&
is_col_vector
(
alpha
)
&&
is_col_vector
(
lower
)
&&
is_col_vector
(
upper
)
&&
b
.
size
()
==
alpha
.
size
()
&&
b
.
size
()
==
Q
.
nr
()
&&
alpha
.
size
()
>
0
&&
0
<=
min
(
alpha
-
lower
)
&&
0
<=
max
(
upper
-
alpha
)
&&
eps
>
0
&&
max_iter
>
0
,
"
\t
unsigned long solve_qp_box_using_smo()"
<<
"
\n\t
Invalid arguments were given to this function"
<<
"
\n\t
Q.nr(): "
<<
Q
.
nr
()
<<
"
\n\t
Q.nc(): "
<<
Q
.
nc
()
<<
"
\n\t
is_col_vector(b): "
<<
is_col_vector
(
b
)
<<
"
\n\t
is_col_vector(alpha): "
<<
is_col_vector
(
alpha
)
<<
"
\n\t
is_col_vector(lower): "
<<
is_col_vector
(
lower
)
<<
"
\n\t
is_col_vector(upper): "
<<
is_col_vector
(
upper
)
<<
"
\n\t
b.size(): "
<<
b
.
size
()
<<
"
\n\t
alpha.size(): "
<<
alpha
.
size
()
<<
"
\n\t
lower.size(): "
<<
lower
.
size
()
<<
"
\n\t
upper.size(): "
<<
upper
.
size
()
<<
"
\n\t
Q.nr(): "
<<
Q
.
nr
()
<<
"
\n\t
min(alpha-lower): "
<<
min
(
alpha
-
lower
)
<<
"
\n\t
max(upper-alpha): "
<<
max
(
upper
-
alpha
)
<<
"
\n\t
eps: "
<<
eps
<<
"
\n\t
max_iter: "
<<
max_iter
);
// Compute f'(alpha) (i.e. the gradient of f(alpha)) for the current alpha.
matrix
<
T
,
NR
,
NC
,
MM
,
L
>
df
=
Q
*
alpha
+
b
;
matrix
<
T
,
NR
,
NC
,
MM
,
L
>
QQ
=
reciprocal_max
(
diag
(
Q
));
unsigned
long
iter
=
0
;
for
(;
iter
<
max_iter
;
++
iter
)
{
T
max_df
=
0
;
long
best_r
=
0
;
for
(
long
r
=
0
;
r
<
Q
.
nr
();
++
r
)
{
if
(
alpha
(
r
)
<=
lower
(
r
)
&&
df
(
r
)
>
0
)
;
//alpha(r) = lower(r);
else
if
(
alpha
(
r
)
>=
upper
(
r
)
&&
df
(
r
)
<
0
)
;
//alpha(r) = upper(r);
else
if
(
std
::
abs
(
df
(
r
))
>
max_df
)
{
best_r
=
r
;
max_df
=
std
::
abs
(
df
(
r
));
}
}
//for (long r = 0; r < Q.nr(); ++r)
long
r
=
best_r
;
{
const
T
old_alpha
=
alpha
(
r
);
alpha
(
r
)
=
-
(
df
(
r
)
-
Q
(
r
,
r
)
*
alpha
(
r
))
*
QQ
(
r
);
if
(
alpha
(
r
)
<
lower
(
r
))
alpha
(
r
)
=
lower
(
r
);
else
if
(
alpha
(
r
)
>
upper
(
r
))
alpha
(
r
)
=
upper
(
r
);
const
T
delta
=
old_alpha
-
alpha
(
r
);
// Now update the gradient. We will perform the equivalent of: df = Q*alpha + b;
for
(
long
k
=
0
;
k
<
df
.
nr
();
++
k
)
df
(
k
)
-=
Q
(
r
,
k
)
*
delta
;
}
if
(
max_df
<
eps
)
break
;
}
//cout << "df: \n" << trans(df) << endl;
//cout << "objective value: " << 0.5*trans(alpha)*Q*alpha + trans(b)*alpha << endl;
return
iter
+
1
;
}
// ----------------------------------------------------------------------------------------
namespace
impl_mpc
{
template
<
long
N
>
void
pack
(
matrix
<
double
,
0
,
1
>&
out
,
const
std
::
vector
<
matrix
<
double
,
N
,
1
>
>&
item
)
{
DLIB_CASSERT
(
item
.
size
()
!=
0
,
""
);
out
.
set_size
(
item
.
size
()
*
item
[
0
].
size
());
long
j
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
item
.
size
();
++
i
)
for
(
long
r
=
0
;
r
<
item
[
i
].
size
();
++
r
)
out
(
j
++
)
=
item
[
i
](
r
);
}
template
<
long
N
>
void
pack
(
matrix
<
double
,
0
,
1
>&
out
,
const
matrix
<
double
,
N
,
1
>&
item
,
const
long
num
)
{
out
.
set_size
(
item
.
size
()
*
num
);
long
j
=
0
;
for
(
long
r
=
0
;
r
<
num
;
++
r
)
for
(
long
i
=
0
;
i
<
item
.
size
();
++
i
)
out
(
j
++
)
=
item
(
i
);
}
template
<
long
N
>
void
unpack
(
std
::
vector
<
matrix
<
double
,
N
,
1
>
>&
out
,
const
matrix
<
double
,
0
,
1
>&
item
)
{
DLIB_CASSERT
(
out
.
size
()
!=
0
,
""
);
DLIB_CASSERT
((
long
)
out
.
size
()
*
out
[
0
].
size
()
==
item
.
size
(),
""
);
long
j
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
out
.
size
();
++
i
)
for
(
long
r
=
0
;
r
<
out
[
i
].
size
();
++
r
)
out
[
i
](
r
)
=
item
(
j
++
);
}
}
template
<
long
S
,
long
I
>
unsigned
long
solve_linear_mpc
(
const
matrix
<
double
,
S
,
S
>&
A
,
const
matrix
<
double
,
S
,
I
>&
B
,
const
matrix
<
double
,
S
,
1
>&
C
,
const
matrix
<
double
,
S
,
1
>&
Q
,
const
matrix
<
double
,
I
,
1
>&
R
,
const
matrix
<
double
,
I
,
1
>&
_lower
,
const
matrix
<
double
,
I
,
1
>&
_upper
,
const
std
::
vector
<
matrix
<
double
,
S
,
1
>
>&
target
,
const
matrix
<
double
,
S
,
1
>&
initial_state
,
std
::
vector
<
matrix
<
double
,
I
,
1
>
>&
controls
// input and output
)
{
using
namespace
impl_mpc
;
DLIB_CASSERT
(
target
.
size
()
==
controls
.
size
(),
""
);
matrix
<
double
>
K
(
B
.
nr
()
*
controls
.
size
(),
B
.
nc
()
*
controls
.
size
());
matrix
<
double
,
0
,
1
>
M
(
B
.
nr
()
*
controls
.
size
());
// compute powers of A: Apow[i] == A^i
std
::
vector
<
matrix
<
double
,
S
,
S
>
>
Apow
(
controls
.
size
());
Apow
[
0
]
=
identity_matrix
(
A
);
for
(
unsigned
long
i
=
1
;
i
<
Apow
.
size
();
++
i
)
Apow
[
i
]
=
A
*
Apow
[
i
-
1
];
// fill in K
K
=
0
;
for
(
unsigned
long
r
=
0
;
r
<
controls
.
size
();
++
r
)
for
(
unsigned
long
c
=
0
;
c
<=
r
;
++
c
)
set_subm
(
K
,
r
*
B
.
nr
(),
c
*
B
.
nc
(),
B
.
nr
(),
B
.
nc
())
=
Apow
[
r
-
c
]
*
B
;
// fill in M
set_subm
(
M
,
0
*
A
.
nr
(),
0
,
A
.
nr
(),
1
)
=
A
*
initial_state
+
C
;
for
(
unsigned
long
i
=
1
;
i
<
controls
.
size
();
++
i
)
set_subm
(
M
,
i
*
A
.
nr
(),
0
,
A
.
nr
(),
1
)
=
A
*
subm
(
M
,(
i
-
1
)
*
A
.
nr
(),
0
,
A
.
nr
(),
1
)
+
C
;
//cout << "M: \n" << M << endl;
//cout << "K: \n" << K << endl;
matrix
<
double
,
0
,
1
>
t
,
v
,
lower
,
upper
;
pack
(
t
,
target
);
pack
(
v
,
controls
);
pack
(
lower
,
_lower
,
controls
.
size
());
pack
(
upper
,
_upper
,
controls
.
size
());
matrix
<
double
>
QQ
(
K
.
nr
(),
K
.
nr
()),
RR
(
K
.
nc
(),
K
.
nc
());
QQ
=
0
;
RR
=
0
;
for
(
unsigned
long
c
=
0
;
c
<
controls
.
size
();
++
c
)
{
set_subm
(
QQ
,
c
*
Q
.
nr
(),
c
*
Q
.
nr
(),
Q
.
nr
(),
Q
.
nr
())
=
diagm
(
Q
);
set_subm
(
RR
,
c
*
R
.
nr
(),
c
*
R
.
nr
(),
R
.
nr
(),
R
.
nr
())
=
diagm
(
R
);
}
matrix
<
double
>
m1
=
trans
(
K
)
*
QQ
*
K
+
RR
;
matrix
<
double
>
m2
=
trans
(
K
)
*
QQ
*
(
M
-
t
);
// run the solver...
unsigned
long
iter
;
iter
=
solve_qp_box_using_smo
(
m1
,
m2
,
v
,
lower
,
upper
,
0.00000001
,
100000
);
//cout << "iterations: " << iter << endl;
unpack
(
controls
,
v
);
return
iter
;
}
class
test_mpc
:
public
tester
{
public
:
test_mpc
(
)
:
tester
(
"test_mpc"
,
"Runs tests on the mpc object."
)
{}
void
perform_test
(
)
{
// a basic position + velocity model
matrix
<
double
,
2
,
2
>
A
;
A
=
1
,
1
,
0
,
1
;
matrix
<
double
,
2
,
1
>
B
,
C
;
B
=
0
,
1
;
C
=
0.02
,
0.1
;
// no constant bias
matrix
<
double
,
2
,
1
>
Q
;
Q
=
2
,
0
;
// only care about getting the position right
matrix
<
double
,
1
,
1
>
R
,
lower
,
upper
;
R
=
1
;
lower
=
-
0.2
;
upper
=
0.2
;
std
::
vector
<
matrix
<
double
,
1
,
1
>
>
controls
(
30
);
std
::
vector
<
matrix
<
double
,
2
,
1
>
>
target
(
30
);
for
(
unsigned
long
i
=
0
;
i
<
controls
.
size
();
++
i
)
{
controls
[
i
]
=
0
;
target
[
i
]
=
0
;
}
mpc
<
2
,
1
,
30
>
solver
(
A
,
B
,
C
,
Q
,
R
,
lower
,
upper
);
solver
.
set_epsilon
(
0.00000001
);
solver
.
set_max_iterations
(
10000
);
matrix
<
double
,
2
,
1
>
initial_state
;
initial_state
=
0
;
initial_state
(
0
)
=
5
;
for
(
int
i
=
0
;
i
<
30
;
++
i
)
{
print_spinner
();
matrix
<
double
,
1
,
1
>
control
=
solver
(
initial_state
);
for
(
unsigned
long
i
=
1
;
i
<
controls
.
size
();
++
i
)
controls
[
i
-
1
]
=
controls
[
i
];
// Compute the correct control via SMO and make sure it matches.
solve_linear_mpc
(
A
,
B
,
C
,
Q
,
R
,
lower
,
upper
,
target
,
initial_state
,
controls
);
dlog
<<
LINFO
<<
"ERROR: "
<<
length
(
control
-
controls
[
0
]);
DLIB_TEST
(
length
(
control
-
controls
[
0
])
<
1e-7
);
initial_state
=
A
*
initial_state
+
B
*
control
+
C
;
//cout << control(0) << "\t" << trans(initial_state);
}
}
}
a
;
}
docs/docs/optimization.xml
View file @
c4e4cd00
...
...
@@ -47,6 +47,7 @@
<item>
solve_qp3_using_smo
</item>
<item>
solve_qp4_using_smo
</item>
<item>
oca
</item>
<item>
mpc
</item>
<item>
solve_least_squares
</item>
<item>
solve_least_squares_lm
</item>
<item>
solve_trust_region_subproblem
</item>
...
...
@@ -761,6 +762,23 @@ Or it can alternatively solve:
</component>
<!-- ************************************************************************* -->
<component>
<name>
mpc
</name>
<file>
dlib/control.h
</file>
<spec_file
link=
"true"
>
dlib/control/mpc_abstract.h
</spec_file>
<description>
This object implements a linear model predictive controller.
In particular, it solves a certain quadratic program using the method
described in the paper:
<blockquote>
A Fast Gradient method for embedded linear predictive control (2011)
by Markus Kogel and Rolf Findeisen
</blockquote>
</description>
</component>
<!-- ************************************************************************* -->
...
...
docs/docs/term_index.xml
View file @
c4e4cd00
...
...
@@ -158,6 +158,7 @@
<term
file=
"optimization.html"
name=
"solve_qp3_using_smo"
include=
"dlib/optimization.h"
/>
<term
file=
"optimization.html"
name=
"solve_qp4_using_smo"
include=
"dlib/optimization.h"
/>
<term
file=
"optimization.html"
name=
"oca"
include=
"dlib/optimization.h"
/>
<term
file=
"optimization.html"
name=
"mpc"
include=
"dlib/control.h"
/>
<term
link=
"optimization.html#find_min_bobyqa"
name=
"BOBYQA"
include=
"dlib/optimization.h"
/>
<term
file=
"optimization.html"
name=
"find_max"
include=
"dlib/optimization.h"
/>
<term
file=
"optimization.html"
name=
"find_max_single_variable"
include=
"dlib/optimization.h"
/>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment