Commit c9bdb9b2 authored by Davis King's avatar Davis King

Added python bindings for the max_cost_assignment() and assignment_cost() routines.

parent b68e5a37
...@@ -7,6 +7,8 @@ ...@@ -7,6 +7,8 @@
#include <dlib/sparse_vector.h> #include <dlib/sparse_vector.h>
#include <boost/python/args.hpp> #include <boost/python/args.hpp>
#include "pyassert.h" #include "pyassert.h"
#include <dlib/optimization.h>
#include "boost_python_utils.h"
using namespace dlib; using namespace dlib;
using namespace std; using namespace std;
...@@ -50,10 +52,70 @@ void _save_libsvm_formatted_data ( ...@@ -50,10 +52,70 @@ void _save_libsvm_formatted_data (
save_libsvm_formatted_data(file_name, samples, labels); save_libsvm_formatted_data(file_name, samples, labels);
} }
// ----------------------------------------------------------------------------------------
list _max_cost_assignment (
const matrix<double>& cost
)
{
// max_cost_assignment() only works with integer matrices, so convert from
// double to integer.
const double scale = (std::numeric_limits<dlib::int64>::max()/1000)/max(abs(cost));
matrix<dlib::int64> int_cost = matrix_cast<dlib::int64>(round(cost*scale));
return vector_to_python_list(max_cost_assignment(int_cost));
}
double _assignment_cost (
const matrix<double>& cost,
const list& assignment
)
{
return assignment_cost(cost, python_list_to_vector<long>(assignment));
}
// ----------------------------------------------------------------------------------------
void bind_other() void bind_other()
{ {
using boost::python::arg; using boost::python::arg;
def("max_cost_assignment", _max_cost_assignment, (arg("cost")),
"requires \n\
- cost.nr() == cost.nc() \n\
(i.e. the input must be a square matrix) \n\
ensures \n\
- Finds and returns the solution to the following optimization problem: \n\
\n\
Maximize: f(A) == assignment_cost(cost, A) \n\
Subject to the following constraints: \n\
- The elements of A are unique. That is, there aren't any \n\
elements of A which are equal. \n\
- len(A) == cost.nr() \n\
\n\
- Note that this function converts the input cost matrix into a 64bit fixed \n\
point representation. Therefore, you should make sure that the values in \n\
your cost matrix can be accurately represented by 64bit fixed point values. \n\
If this is not the case then the solution my become inaccurate due to \n\
rounding error. In general, this function will work properly when the ratio \n\
of the largest to the smallest value in cost is no more than about 1e16. "
);
def("assignment_cost", _assignment_cost, (arg("cost"),arg("assignment")),
"requires \n\
- cost.nr() == cost.nc() \n\
(i.e. the input must be a square matrix) \n\
- for all valid i: \n\
- 0 <= assignment[i] < cost.nr() \n\
ensures \n\
- Interprets cost as a cost assignment matrix. That is, cost[i][j] \n\
represents the cost of assigning i to j. \n\
- Interprets assignment as a particular set of assignments. That is, \n\
i is assigned to assignment[i]. \n\
- returns the cost of the given assignment. That is, returns \n\
a number which is: \n\
sum over i: cost[i][assignment[i]] "
);
def("make_sparse_vector", _make_sparse_vector , def("make_sparse_vector", _make_sparse_vector ,
"This function modifies its argument so that it is a properly sorted sparse vector. \n\ "This function modifies its argument so that it is a properly sorted sparse vector. \n\
This means that the elements of the sparse vector will be ordered so that pairs \n\ This means that the elements of the sparse vector will be ordered so that pairs \n\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment