Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
cc9ff97a
Commit
cc9ff97a
authored
Jul 07, 2013
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Cleaned up python svm struct code a little.
parent
d0a054f1
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
38 additions
and
18 deletions
+38
-18
svm_struct.py
python_examples/svm_struct.py
+24
-16
svm_struct.cpp
tools/python/src/svm_struct.cpp
+14
-2
No files found.
python_examples/svm_struct.py
View file @
cc9ff97a
#!/usr/bin/python
# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
#
# This is an example illustrating the use of the structural SVM solver from the dlib C++
# Library. This example will briefly introduce it and then walk through an example showing
# how to use it to create a simple multi-class classifier.
#
#
# COMPILING THE DLIB PYTHON INTERFACE
...
...
@@ -15,6 +18,7 @@
import
dlib
def
dot
(
a
,
b
):
"Compute the dot product between the two vectors a and b."
return
sum
(
i
*
j
for
i
,
j
in
zip
(
a
,
b
))
...
...
@@ -23,30 +27,35 @@ class three_class_classifier_problem:
be_verbose
=
True
epsilon
=
0.0001
def
__init__
(
self
,
samples
,
labels
):
self
.
num_samples
=
len
(
samples
)
self
.
num_dimensions
=
len
(
samples
[
0
])
*
3
self
.
samples
=
samples
self
.
labels
=
labels
def
make_psi
(
self
,
psi
,
vector
,
label
):
def
make_psi
(
self
,
vector
,
label
):
psi
=
dlib
.
vector
()
psi
.
resize
(
self
.
num_dimensions
)
dims
=
len
(
vector
)
if
(
label
==
1
):
if
(
label
==
0
):
for
i
in
range
(
0
,
dims
):
psi
[
i
]
=
vector
[
i
]
elif
(
label
==
2
):
elif
(
label
==
1
):
for
i
in
range
(
dims
,
2
*
dims
):
psi
[
i
]
=
vector
[
i
-
dims
]
else
:
else
:
# the label must be 2
for
i
in
range
(
2
*
dims
,
3
*
dims
):
psi
[
i
]
=
vector
[
i
-
2
*
dims
]
return
psi
def
get_truth_joint_feature_vector
(
self
,
idx
,
psi
):
self
.
make_psi
(
psi
,
self
.
samples
[
idx
],
self
.
labels
[
idx
])
def
get_truth_joint_feature_vector
(
self
,
idx
):
return
self
.
make_psi
(
self
.
samples
[
idx
],
self
.
labels
[
idx
])
def
separation_oracle
(
self
,
idx
,
current_solution
,
psi
):
def
separation_oracle
(
self
,
idx
,
current_solution
):
samp
=
samples
[
idx
]
dims
=
len
(
samp
)
scores
=
[
0
,
0
,
0
]
...
...
@@ -56,29 +65,28 @@ class three_class_classifier_problem:
scores
[
2
]
=
dot
(
current_solution
[
2
*
dims
:
3
*
dims
],
samp
)
# Add in the loss-augmentation
if
(
labels
[
idx
]
!=
1
):
if
(
labels
[
idx
]
!=
0
):
scores
[
0
]
+=
1
if
(
labels
[
idx
]
!=
2
):
if
(
labels
[
idx
]
!=
1
):
scores
[
1
]
+=
1
if
(
labels
[
idx
]
!=
3
):
if
(
labels
[
idx
]
!=
2
):
scores
[
2
]
+=
1
# Now figure out which classifier has the largest loss-augmented score.
max_scoring_label
=
scores
.
index
(
max
(
scores
))
+
1
max_scoring_label
=
scores
.
index
(
max
(
scores
))
if
(
max_scoring_label
==
labels
[
idx
]):
loss
=
0
else
:
loss
=
1
self
.
make_psi
(
psi
,
samp
,
max_scoring_label
)
psi
=
self
.
make_psi
(
samp
,
max_scoring_label
)
return
loss
return
loss
,
psi
samples
=
[
[
0
,
0
,
1
],
[
0
,
1
,
0
],
[
1
,
0
,
0
]];
labels
=
[
1
,
2
,
3
]
samples
=
[[
0
,
0
,
1
],
[
0
,
1
,
0
],
[
1
,
0
,
0
]];
labels
=
[
0
,
1
,
2
]
problem
=
three_class_classifier_problem
(
samples
,
labels
)
weights
=
dlib
.
solve_structural_svm_problem
(
problem
)
...
...
tools/python/src/svm_struct.cpp
View file @
cc9ff97a
...
...
@@ -37,7 +37,7 @@ public:
feature_vector_type
&
psi
)
const
{
p
roblem
.
attr
(
"get_truth_joint_feature_vector"
)(
idx
,
boost
::
ref
(
psi
));
p
si
=
extract
<
feature_vector_type
&>
(
problem
.
attr
(
"get_truth_joint_feature_vector"
)(
idx
));
}
virtual
void
separation_oracle
(
...
...
@@ -47,7 +47,19 @@ public:
feature_vector_type
&
psi
)
const
{
loss
=
extract
<
double
>
(
problem
.
attr
(
"separation_oracle"
)(
idx
,
boost
::
ref
(
current_solution
),
boost
::
ref
(
psi
)));
object
res
=
problem
.
attr
(
"separation_oracle"
)(
idx
,
boost
::
ref
(
current_solution
));
pyassert
(
len
(
res
)
==
2
,
"separation_oracle() must return two objects, the loss and the psi vector"
);
// let the user supply the output arguments in any order.
if
(
extract
<
double
>
(
res
[
0
]).
check
())
{
loss
=
extract
<
double
>
(
res
[
0
]);
psi
=
extract
<
feature_vector_type
&>
(
res
[
1
]);
}
else
{
psi
=
extract
<
feature_vector_type
&>
(
res
[
0
]);
loss
=
extract
<
double
>
(
res
[
1
]);
}
}
private
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment