Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
d32bcdfa
Commit
d32bcdfa
authored
May 27, 2016
by
Fm
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Changed concat syntax into concat1, concat2..., made dtest more readable::
parent
2f7d3578
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
140 additions
and
94 deletions
+140
-94
core.h
dlib/dnn/core.h
+1
-1
layers.h
dlib/dnn/layers.h
+36
-8
layers_abstract.h
dlib/dnn/layers_abstract.h
+36
-8
dnn.cpp
dlib/test/dnn.cpp
+67
-76
dnn_inception_ex.cpp
examples/dnn_inception_ex.cpp
+0
-1
No files found.
dlib/dnn/core.h
View file @
d32bcdfa
...
...
@@ -536,7 +536,7 @@ namespace dlib
subnet_wrapper
(
const
subnet_wrapper
&
)
=
delete
;
subnet_wrapper
&
operator
=
(
const
subnet_wrapper
&
)
=
delete
;
subnet_wrapper
(
T
&
l_
)
{}
subnet_wrapper
(
T
&
/*l_*/
)
{}
// Nothing here because in this case T is one of the input layer types
// that doesn't have anything in it.
};
...
...
dlib/dnn/layers.h
View file @
d32bcdfa
...
...
@@ -1953,8 +1953,31 @@ namespace dlib
};
template
<
typename
SUBNET
,
template
<
typename
>
class
...
TAG_TYPES
>
using
concat
=
add_layer
<
concat_
<
TAG_TYPES
...
>
,
SUBNET
>
;
// concat layer definitions
template
<
template
<
typename
>
class
TAG1
,
typename
SUBNET
>
using
concat1
=
add_layer
<
concat_
<
TAG1
>
,
SUBNET
>
;
template
<
template
<
typename
>
class
TAG1
,
template
<
typename
>
class
TAG2
,
typename
SUBNET
>
using
concat2
=
add_layer
<
concat_
<
TAG1
,
TAG2
>
,
SUBNET
>
;
template
<
template
<
typename
>
class
TAG1
,
template
<
typename
>
class
TAG2
,
template
<
typename
>
class
TAG3
,
typename
SUBNET
>
using
concat3
=
add_layer
<
concat_
<
TAG1
,
TAG2
,
TAG3
>
,
SUBNET
>
;
template
<
template
<
typename
>
class
TAG1
,
template
<
typename
>
class
TAG2
,
template
<
typename
>
class
TAG3
,
template
<
typename
>
class
TAG4
,
typename
SUBNET
>
using
concat4
=
add_layer
<
concat_
<
TAG1
,
TAG2
,
TAG3
,
TAG4
>
,
SUBNET
>
;
template
<
template
<
typename
>
class
TAG1
,
template
<
typename
>
class
TAG2
,
template
<
typename
>
class
TAG3
,
template
<
typename
>
class
TAG4
,
template
<
typename
>
class
TAG5
,
typename
SUBNET
>
using
concat5
=
add_layer
<
concat_
<
TAG1
,
TAG2
,
TAG3
,
TAG4
,
TAG5
>
,
SUBNET
>
;
// inception layer will use tags internally. If user will use tags too,
// some conflicts possible
...
...
@@ -1969,30 +1992,35 @@ namespace dlib
template
<
typename
SUBNET
>
using
iskip
=
add_skip_layer
<
itag0
,
SUBNET
>
;
// here are some templates to be used for creating inception layer groups
template
<
template
<
typename
>
class
B1
,
typename
SUBNET
>
using
inception1
=
concat1
<
itag1
,
itag1
<
B1
<
iskip
<
itag0
<
SUBNET
>>>>>
;
template
<
template
<
typename
>
class
B1
,
template
<
typename
>
class
B2
,
typename
SUBNET
>
using
inception2
=
concat
<
itag1
<
B1
<
iskip
<
itag2
<
B2
<
itag0
<
SUBNET
>>>>>>
,
itag1
,
itag2
>
;
using
inception2
=
concat
2
<
itag1
,
itag2
,
itag1
<
B1
<
iskip
<
itag2
<
B2
<
itag0
<
SUBNET
>>>>>>
>
;
template
<
template
<
typename
>
class
B1
,
template
<
typename
>
class
B2
,
template
<
typename
>
class
B3
,
typename
SUBNET
>
using
inception3
=
concat
<
itag1
<
B1
<
iskip
<
itag2
<
B2
<
iskip
<
itag3
<
B3
<
itag0
<
SUBNET
>>>>>>>>>
,
itag1
,
itag2
,
itag3
>
;
using
inception3
=
concat
3
<
itag1
,
itag2
,
itag3
,
itag1
<
B1
<
iskip
<
itag2
<
B2
<
iskip
<
itag3
<
B3
<
itag0
<
SUBNET
>>>>>>>>>
>
;
template
<
template
<
typename
>
class
B1
,
template
<
typename
>
class
B2
,
template
<
typename
>
class
B3
,
template
<
typename
>
class
B4
,
typename
SUBNET
>
using
inception4
=
concat
<
itag1
<
B1
<
iskip
<
itag2
<
B2
<
iskip
<
itag3
<
B3
<
iskip
<
itag4
<
B4
<
itag0
<
SUBNET
>>>>>>>>>>>>
,
itag1
,
itag2
,
itag3
,
itag4
>
;
using
inception4
=
concat4
<
itag1
,
itag2
,
itag3
,
itag4
,
itag1
<
B1
<
iskip
<
itag2
<
B2
<
iskip
<
itag3
<
B3
<
iskip
<
itag4
<
B4
<
itag0
<
SUBNET
>>>>>>>>>>>>
>
;
template
<
template
<
typename
>
class
B1
,
template
<
typename
>
class
B2
,
template
<
typename
>
class
B3
,
template
<
typename
>
class
B4
,
template
<
typename
>
class
B5
,
typename
SUBNET
>
using
inception5
=
concat
<
itag1
<
B1
<
iskip
<
itag2
<
B2
<
iskip
<
itag3
<
B3
<
iskip
<
itag4
<
B4
<
iskip
<
itag5
<
B5
<
itag0
<
SUBNET
>>>>>>>>>>>>>>>
,
itag1
,
itag2
,
itag3
,
itag4
,
itag5
>
;
using
inception5
=
concat5
<
itag1
,
itag2
,
itag3
,
itag4
,
itag5
,
itag1
<
B1
<
iskip
<
itag2
<
B2
<
iskip
<
itag3
<
B3
<
iskip
<
itag4
<
B4
<
iskip
<
itag5
<
B5
<
itag0
<
SUBNET
>>>>>>>>>>>>>>>
>
;
// ----------------------------------------------------------------------------------------
}
...
...
dlib/dnn/layers_abstract.h
View file @
d32bcdfa
...
...
@@ -1693,8 +1693,31 @@ namespace dlib
};
template
<
typename
SUBNET
,
template
<
typename
>
class
...
TAG_TYPES
>
using
concat
=
add_layer
<
concat_
<
TAG_TYPES
...
>
,
SUBNET
>
;
// concat layer definitions
template
<
template
<
typename
>
class
TAG1
,
typename
SUBNET
>
using
concat1
=
add_layer
<
concat_
<
TAG1
>
,
SUBNET
>
;
template
<
template
<
typename
>
class
TAG1
,
template
<
typename
>
class
TAG2
,
typename
SUBNET
>
using
concat2
=
add_layer
<
concat_
<
TAG1
,
TAG2
>
,
SUBNET
>
;
template
<
template
<
typename
>
class
TAG1
,
template
<
typename
>
class
TAG2
,
template
<
typename
>
class
TAG3
,
typename
SUBNET
>
using
concat3
=
add_layer
<
concat_
<
TAG1
,
TAG2
,
TAG3
>
,
SUBNET
>
;
template
<
template
<
typename
>
class
TAG1
,
template
<
typename
>
class
TAG2
,
template
<
typename
>
class
TAG3
,
template
<
typename
>
class
TAG4
,
typename
SUBNET
>
using
concat4
=
add_layer
<
concat_
<
TAG1
,
TAG2
,
TAG3
,
TAG4
>
,
SUBNET
>
;
template
<
template
<
typename
>
class
TAG1
,
template
<
typename
>
class
TAG2
,
template
<
typename
>
class
TAG3
,
template
<
typename
>
class
TAG4
,
template
<
typename
>
class
TAG5
,
typename
SUBNET
>
using
concat5
=
add_layer
<
concat_
<
TAG1
,
TAG2
,
TAG3
,
TAG4
,
TAG5
>
,
SUBNET
>
;
// inception layer will use tags internally. If user will use tags too,
// some conflicts possible
...
...
@@ -1709,30 +1732,35 @@ namespace dlib
template
<
typename
SUBNET
>
using
iskip
=
add_skip_layer
<
itag0
,
SUBNET
>
;
// here are some templates to be used for creating inception layer groups
template
<
template
<
typename
>
class
B1
,
typename
SUBNET
>
using
inception1
=
concat1
<
itag1
,
itag1
<
B1
<
iskip
<
itag0
<
SUBNET
>>>>>
;
template
<
template
<
typename
>
class
B1
,
template
<
typename
>
class
B2
,
typename
SUBNET
>
using
inception2
=
concat
<
itag1
<
B1
<
iskip
<
itag2
<
B2
<
itag0
<
SUBNET
>>>>>>
,
itag1
,
itag2
>
;
using
inception2
=
concat
2
<
itag1
,
itag2
,
itag1
<
B1
<
iskip
<
itag2
<
B2
<
itag0
<
SUBNET
>>>>>>
>
;
template
<
template
<
typename
>
class
B1
,
template
<
typename
>
class
B2
,
template
<
typename
>
class
B3
,
typename
SUBNET
>
using
inception3
=
concat
<
itag1
<
B1
<
iskip
<
itag2
<
B2
<
iskip
<
itag3
<
B3
<
itag0
<
SUBNET
>>>>>>>>>
,
itag1
,
itag2
,
itag3
>
;
using
inception3
=
concat
3
<
itag1
,
itag2
,
itag3
,
itag1
<
B1
<
iskip
<
itag2
<
B2
<
iskip
<
itag3
<
B3
<
itag0
<
SUBNET
>>>>>>>>>
>
;
template
<
template
<
typename
>
class
B1
,
template
<
typename
>
class
B2
,
template
<
typename
>
class
B3
,
template
<
typename
>
class
B4
,
typename
SUBNET
>
using
inception4
=
concat
<
itag1
<
B1
<
iskip
<
itag2
<
B2
<
iskip
<
itag3
<
B3
<
iskip
<
itag4
<
B4
<
itag0
<
SUBNET
>>>>>>>>>>>>
,
itag1
,
itag2
,
itag3
,
itag4
>
;
using
inception4
=
concat4
<
itag1
,
itag2
,
itag3
,
itag4
,
itag1
<
B1
<
iskip
<
itag2
<
B2
<
iskip
<
itag3
<
B3
<
iskip
<
itag4
<
B4
<
itag0
<
SUBNET
>>>>>>>>>>>>
>
;
template
<
template
<
typename
>
class
B1
,
template
<
typename
>
class
B2
,
template
<
typename
>
class
B3
,
template
<
typename
>
class
B4
,
template
<
typename
>
class
B5
,
typename
SUBNET
>
using
inception5
=
concat
<
itag1
<
B1
<
iskip
<
itag2
<
B2
<
iskip
<
itag3
<
B3
<
iskip
<
itag4
<
B4
<
iskip
<
itag5
<
B5
<
itag0
<
SUBNET
>>>>>>>>>>>>>>>
,
itag1
,
itag2
,
itag3
,
itag4
,
itag5
>
;
using
inception5
=
concat5
<
itag1
,
itag2
,
itag3
,
itag4
,
itag5
,
itag1
<
B1
<
iskip
<
itag2
<
B2
<
iskip
<
itag3
<
B3
<
iskip
<
itag4
<
B4
<
iskip
<
itag5
<
B5
<
itag0
<
SUBNET
>>>>>>>>>>>>>>>
>
;
// ----------------------------------------------------------------------------------------
...
...
dlib/test/dnn.cpp
View file @
d32bcdfa
...
...
@@ -11,83 +11,11 @@
#include "tester.h"
namespace
dlib
{
template
<
typename
SUBNET
>
using
concat_block1
=
con
<
5
,
1
,
1
,
1
,
1
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
concat_block2
=
con
<
8
,
3
,
3
,
1
,
1
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
concat_block3
=
max_pool
<
3
,
3
,
1
,
1
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
concat_incept
=
inception3
<
concat_block1
,
concat_block2
,
concat_block3
,
SUBNET
>
;
// this class is a friend of add_layer and can access private members
class
dnn_tester
{
public
:
// tester function is a member to have access to a private x_grad member of add_layer
static
void
test_concat
()
{
using
namespace
test
;
using
namespace
std
;
using
namespace
dlib
::
tt
;
print_spinner
();
using
net_type
=
concat_incept
<
input
<
matrix
<
float
>>>
;
resizable_tensor
data
(
10
,
1
,
111
,
222
);
data
=
matrix_cast
<
float
>
(
gaussian_randm
(
data
.
num_samples
(),
data
.
k
()
*
data
.
nr
()
*
data
.
nc
(),
1
));
net_type
net
;
auto
&
out
=
net
.
forward
(
data
);
auto
&
b1o
=
layer
<
itag1
>
(
net
).
get_output
();
auto
&
b2o
=
layer
<
itag2
>
(
net
).
get_output
();
auto
&
b3o
=
layer
<
itag3
>
(
net
).
get_output
();
resizable_tensor
dest
(
10
,
14
,
111
,
222
);
copy_tensor
(
dest
,
0
,
b1o
,
0
,
b1o
.
k
());
copy_tensor
(
dest
,
b1o
.
k
(),
b2o
,
0
,
b2o
.
k
());
copy_tensor
(
dest
,
b1o
.
k
()
+
b2o
.
k
(),
b3o
,
0
,
b3o
.
k
());
DLIB_TEST
(
dest
.
size
()
==
out
.
size
());
int
error
=
memcmp
(
dest
.
host
(),
out
.
host
(),
dest
.
size
());
DLIB_TEST
(
error
==
0
);
resizable_tensor
gr
(
10
,
14
,
111
,
222
);
gr
=
matrix_cast
<
float
>
(
gaussian_randm
(
gr
.
num_samples
(),
gr
.
k
()
*
gr
.
nr
()
*
gr
.
nc
(),
1
));
memcpy
(
net
.
get_gradient_input
(),
gr
);
net
.
back_propagate_error
(
data
);
auto
&
b1g
=
layer
<
itag1
>
(
net
).
subnet
().
x_grad
;
auto
&
b2g
=
layer
<
itag2
>
(
net
).
subnet
().
x_grad
;
auto
&
b3g
=
layer
<
itag3
>
(
net
).
subnet
().
x_grad
;
resizable_tensor
g1
(
10
,
5
,
111
,
222
);
resizable_tensor
g2
(
10
,
8
,
111
,
222
);
resizable_tensor
g3
(
10
,
1
,
111
,
222
);
copy_tensor
(
g1
,
0
,
gr
,
0
,
g1
.
k
());
copy_tensor
(
g2
,
0
,
gr
,
g1
.
k
(),
g2
.
k
());
copy_tensor
(
g3
,
0
,
gr
,
g1
.
k
()
+
g2
.
k
(),
g3
.
k
());
DLIB_TEST
(
g1
.
size
()
==
b1g
.
size
());
error
=
memcmp
(
g1
.
host
(),
b1g
.
host
(),
b1g
.
size
());
DLIB_TEST
(
error
==
0
);
DLIB_TEST
(
g2
.
size
()
==
b2g
.
size
());
error
=
memcmp
(
g2
.
host
(),
b2g
.
host
(),
b2g
.
size
());
DLIB_TEST
(
error
==
0
);
DLIB_TEST
(
g3
.
size
()
==
b3g
.
size
());
error
=
memcmp
(
g3
.
host
(),
b3g
.
host
(),
b3g
.
size
());
DLIB_TEST
(
error
==
0
);
}
};
}
namespace
namespace
dlib
{
using
namespace
test
;
using
namespace
dlib
;
using
namespace
std
;
using
namespace
test
;
logger
dlog
(
"test.dnn"
);
...
...
@@ -1258,7 +1186,7 @@ namespace
r
*
stride_y
+
y_offset
,
window_width
,
window_height
)));
float
err
=
abs
(
image_plane
(
A
,
s
,
k
)(
r
,
c
)
-
expected
);
float
err
=
std
::
abs
(
image_plane
(
A
,
s
,
k
)(
r
,
c
)
-
expected
);
DLIB_TEST_MSG
(
err
<
1e-5
,
err
<<
" "
<<
expected
<<
" "
<<
image_plane
(
A
,
s
,
k
)(
r
,
c
));
}
}
...
...
@@ -1594,6 +1522,8 @@ namespace
"Runs tests on the deep neural network tools."
)
{}
void
test_concat
();
void
perform_test
(
)
{
...
...
@@ -1646,10 +1576,71 @@ namespace
test_layers
();
test_visit_funcions
();
test_copy_tensor_cpu
();
dlib
::
dnn_tester
::
test_concat
();
test_concat
();
}
}
a
;
template
<
typename
SUBNET
>
using
concat_block1
=
con
<
5
,
1
,
1
,
1
,
1
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
concat_block2
=
con
<
8
,
3
,
3
,
1
,
1
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
concat_block3
=
max_pool
<
3
,
3
,
1
,
1
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
concat_incept
=
inception3
<
concat_block1
,
concat_block2
,
concat_block3
,
SUBNET
>
;
void
dnn_tester
::
test_concat
()
{
using
namespace
dlib
::
tt
;
print_spinner
();
using
net_type
=
concat_incept
<
input
<
matrix
<
float
>>>
;
resizable_tensor
data
(
10
,
1
,
111
,
222
);
data
=
matrix_cast
<
float
>
(
gaussian_randm
(
data
.
num_samples
(),
data
.
k
()
*
data
.
nr
()
*
data
.
nc
(),
1
));
net_type
net
;
auto
&
out
=
net
.
forward
(
data
);
auto
&
b1o
=
layer
<
itag1
>
(
net
).
get_output
();
auto
&
b2o
=
layer
<
itag2
>
(
net
).
get_output
();
auto
&
b3o
=
layer
<
itag3
>
(
net
).
get_output
();
resizable_tensor
dest
(
10
,
14
,
111
,
222
);
copy_tensor
(
dest
,
0
,
b1o
,
0
,
b1o
.
k
());
copy_tensor
(
dest
,
b1o
.
k
(),
b2o
,
0
,
b2o
.
k
());
copy_tensor
(
dest
,
b1o
.
k
()
+
b2o
.
k
(),
b3o
,
0
,
b3o
.
k
());
DLIB_TEST
(
dest
.
size
()
==
out
.
size
());
int
error
=
memcmp
(
dest
.
host
(),
out
.
host
(),
dest
.
size
());
DLIB_TEST
(
error
==
0
);
resizable_tensor
gr
(
10
,
14
,
111
,
222
);
gr
=
matrix_cast
<
float
>
(
gaussian_randm
(
gr
.
num_samples
(),
gr
.
k
()
*
gr
.
nr
()
*
gr
.
nc
(),
1
));
memcpy
(
net
.
get_gradient_input
(),
gr
);
net
.
back_propagate_error
(
data
);
auto
&
b1g
=
layer
<
itag1
>
(
net
).
subnet
().
x_grad
;
auto
&
b2g
=
layer
<
itag2
>
(
net
).
subnet
().
x_grad
;
auto
&
b3g
=
layer
<
itag3
>
(
net
).
subnet
().
x_grad
;
resizable_tensor
g1
(
10
,
5
,
111
,
222
);
resizable_tensor
g2
(
10
,
8
,
111
,
222
);
resizable_tensor
g3
(
10
,
1
,
111
,
222
);
copy_tensor
(
g1
,
0
,
gr
,
0
,
g1
.
k
());
copy_tensor
(
g2
,
0
,
gr
,
g1
.
k
(),
g2
.
k
());
copy_tensor
(
g3
,
0
,
gr
,
g1
.
k
()
+
g2
.
k
(),
g3
.
k
());
DLIB_TEST
(
g1
.
size
()
==
b1g
.
size
());
error
=
memcmp
(
g1
.
host
(),
b1g
.
host
(),
b1g
.
size
());
DLIB_TEST
(
error
==
0
);
DLIB_TEST
(
g2
.
size
()
==
b2g
.
size
());
error
=
memcmp
(
g2
.
host
(),
b2g
.
host
(),
b2g
.
size
());
DLIB_TEST
(
error
==
0
);
DLIB_TEST
(
g3
.
size
()
==
b3g
.
size
());
error
=
memcmp
(
g3
.
host
(),
b3g
.
host
(),
b3g
.
size
());
DLIB_TEST
(
error
==
0
);
}
}
examples/dnn_inception_ex.cpp
View file @
d32bcdfa
...
...
@@ -11,7 +11,6 @@
For further reading refer http://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
*/
#include <dlib/dnn.h>
#include <iostream>
#include <dlib/data_io.h>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment