Commit da9de3d8 authored by Davis King's avatar Davis King

Added fine_hog_image object

parent 124e2062
......@@ -7,6 +7,7 @@
#include "image_keypoint/hessian_pyramid.h"
#include "image_keypoint/hog.h"
#include "image_keypoint/poly_image.h"
#include "image_keypoint/fine_hog_image.h"
#include "image_keypoint/hashed_feature_image.h"
#include "image_keypoint/nearest_neighbor_feature_image.h"
......
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_FINE_HOG_IMaGE_H__
#define DLIB_FINE_HOG_IMaGE_H__
#include "fine_hog_image_abstract.h"
#include "../array2d.h"
#include "../matrix.h"
#include "hog.h"
namespace dlib
{
template <
unsigned long cell_size_,
unsigned long block_size_,
unsigned long pixel_stride_,
unsigned char num_orientation_bins_,
int gradient_type_
>
class fine_hog_image : noncopyable
{
COMPILE_TIME_ASSERT(cell_size_ > 1);
COMPILE_TIME_ASSERT(block_size_ > 0);
COMPILE_TIME_ASSERT(pixel_stride_ > 0);
COMPILE_TIME_ASSERT(num_orientation_bins_ > 0);
COMPILE_TIME_ASSERT( gradient_type_ == hog_signed_gradient ||
gradient_type_ == hog_unsigned_gradient);
public:
const static unsigned long cell_size = cell_size_;
const static unsigned long block_size = block_size_;
const static unsigned long pixel_stride = pixel_stride_;
const static unsigned long num_orientation_bins = num_orientation_bins_;
const static int gradient_type = gradient_type_;
const static long min_size = cell_size*block_size+2;
typedef matrix<double, block_size*block_size*num_orientation_bins, 1> descriptor_type;
fine_hog_image (
) :
num_block_rows(0),
num_block_cols(0)
{}
void clear (
)
{
num_block_rows = 0;
num_block_cols = 0;
hist_counts.clear();
}
void copy_configuration (
const fine_hog_image&
){}
template <
typename image_type
>
inline void load (
const image_type& img
)
{
COMPILE_TIME_ASSERT( pixel_traits<typename image_type::type>::has_alpha == false );
load_impl(array_to_matrix(img));
}
inline void unload(
) { clear(); }
inline unsigned long size (
) const { return static_cast<unsigned long>(nr()*nc()); }
inline long nr (
) const { return num_block_rows; }
inline long nc (
) const { return num_block_cols; }
long get_num_dimensions (
) const
{
return block_size*block_size*num_orientation_bins;
}
inline const descriptor_type& operator() (
long row,
long col
) const
{
// make sure requires clause is not broken
DLIB_ASSERT( 0 <= row && row < nr() &&
0 <= col && col < nc(),
"\t descriptor_type fine_hog_image::operator()()"
<< "\n\t invalid row or col argument"
<< "\n\t row: " << row
<< "\n\t col: " << col
<< "\n\t nr(): " << nr()
<< "\n\t nc(): " << nc()
<< "\n\t this: " << this
);
row *= pixel_stride;
col *= pixel_stride;
des = 0;
unsigned long off = 0;
for (unsigned long r = 0; r < block_size; ++r)
{
for (unsigned long c = 0; c < block_size; ++c)
{
for (unsigned long rr = 0; rr < cell_size; ++rr)
{
for (unsigned long cc = 0; cc < cell_size; ++cc)
{
const histogram_count& hist = hist_counts[row + r*cell_size + rr][col + c*cell_size + cc];
des(off + hist.quantized_angle_lower) += hist.lower_strength;
des(off + hist.quantized_angle_upper) += hist.upper_strength;
}
}
off += num_orientation_bins;
}
}
des /= length(des) + 1e-8;
return des;
}
const rectangle get_block_rect (
long row,
long col
) const
{
row *= pixel_stride;
col *= pixel_stride;
// do this to account for the 1 pixel padding we use all around the image
++row;
++col;
return rectangle(col, row, col+cell_size*block_size-1, row+cell_size*block_size-1);
}
const point image_to_feat_space (
const point& p
) const
{
const long border_size = 1 + cell_size*block_size/2;
return (p-point(border_size,border_size))/(long)pixel_stride;
}
const rectangle image_to_feat_space (
const rectangle& rect
) const
{
return rectangle(image_to_feat_space(rect.tl_corner()), image_to_feat_space(rect.br_corner()));
}
const point feat_to_image_space (
const point& p
) const
{
const long border_size = 1 + cell_size*block_size/2;
return p*(long)pixel_stride + point(border_size,border_size);
}
const rectangle feat_to_image_space (
const rectangle& rect
) const
{
return rectangle(feat_to_image_space(rect.tl_corner()), feat_to_image_space(rect.br_corner()));
}
// these _PRIVATE_ functions are only here as a workaround for a bug in visual studio 2005.
void _PRIVATE_serialize (std::ostream& out) const
{
// serialize hist_counts
serialize(hist_counts.nc(),out);
serialize(hist_counts.nr(),out);
hist_counts.reset();
while (hist_counts.move_next())
hist_counts.element().serialize(out);
hist_counts.reset();
serialize(num_block_rows, out);
serialize(num_block_cols, out);
}
void _PRIVATE_deserialize (std::istream& in )
{
// deserialize item.hist_counts
long nc, nr;
deserialize(nc,in);
deserialize(nr,in);
hist_counts.set_size(nr,nc);
while (hist_counts.move_next())
hist_counts.element().deserialize(in);
hist_counts.reset();
deserialize(num_block_rows, in);
deserialize(num_block_cols, in);
}
private:
template <
typename image_type
>
void load_impl (
const image_type& img
)
{
// Note that we keep a border of 1 pixel all around the image so that we don't have
// to worry about running outside the image when computing the horizontal and vertical
// gradients.
// check if the window is just too small
if (img.nr() < min_size || img.nc() < min_size)
{
// If the image is smaller than our windows then there aren't any descriptors at all!
num_block_rows = 0;
num_block_cols = 0;
hist_counts.clear();
return;
}
hist_counts.set_size(img.nr()-2, img.nc()-2);
const double pi = 3.1415926535898;
for (long r = 0; r < hist_counts.nr(); ++r)
{
for (long c = 0; c < hist_counts.nc(); ++c)
{
unsigned long left;
unsigned long right;
unsigned long top;
unsigned long bottom;
assign_pixel(left, img(r+1,c));
assign_pixel(right, img(r+1,c+2));
assign_pixel(top, img(r ,c+1));
assign_pixel(bottom, img(r+2,c+1));
double grad_x = (long)right-(long)left;
double grad_y = (long)top-(long)bottom;
// obtain the angle of the gradient. Make sure it is scaled between 0 and 1.
double angle = std::max(0.0, std::atan2(grad_y, grad_x)/pi + 1)/2;
if (gradient_type == hog_unsigned_gradient)
{
angle *= 2;
if (angle >= 1)
angle -= 1;
}
// now scale angle to between 0 and num_orientation_bins
angle *= num_orientation_bins;
const double strength = std::sqrt(grad_y*grad_y + grad_x*grad_x);
unsigned char quantized_angle_lower = static_cast<unsigned char>(std::floor(angle));
unsigned char quantized_angle_upper = static_cast<unsigned char>(std::ceil(angle));
quantized_angle_lower %= num_orientation_bins;
quantized_angle_upper %= num_orientation_bins;
const double angle_split = (angle-std::floor(angle));
const double upper_strength = angle_split*strength;
const double lower_strength = (1-angle_split)*strength;
// Stick into gradient counts. Note that we linearly interpolate between neighboring
// histogram buckets.
hist_counts[r][c].quantized_angle_lower = quantized_angle_lower;
hist_counts[r][c].quantized_angle_upper = quantized_angle_upper;
hist_counts[r][c].lower_strength = lower_strength;
hist_counts[r][c].upper_strength = upper_strength;
}
}
// Now figure out how many feature extraction blocks we should have.
num_block_rows = (hist_counts.nr() - block_size*cell_size + 1)/(long)pixel_stride;
num_block_cols = (hist_counts.nc() - block_size*cell_size + 1)/(long)pixel_stride;
}
struct histogram_count
{
unsigned char quantized_angle_lower;
unsigned char quantized_angle_upper;
float lower_strength;
float upper_strength;
void serialize(std::ostream& out) const
{
dlib::serialize(quantized_angle_lower, out);
dlib::serialize(quantized_angle_upper, out);
dlib::serialize(lower_strength, out);
dlib::serialize(upper_strength, out);
}
void deserialize(std::istream& in)
{
dlib::deserialize(quantized_angle_lower, in);
dlib::deserialize(quantized_angle_upper, in);
dlib::deserialize(lower_strength, in);
dlib::deserialize(upper_strength, in);
}
};
array2d<histogram_count> hist_counts;
mutable descriptor_type des;
long num_block_rows;
long num_block_cols;
};
// ----------------------------------------------------------------------------------------
template <
unsigned long T1,
unsigned long T2,
unsigned long T3,
unsigned char T4,
int T5
>
void serialize (
const fine_hog_image<T1,T2,T3,T4,T5>& item,
std::ostream& out
)
{
item._PRIVATE_serialize(out);
}
template <
unsigned long T1,
unsigned long T2,
unsigned long T3,
unsigned char T4,
int T5
>
void deserialize (
fine_hog_image<T1,T2,T3,T4,T5>& item,
std::istream& in
)
{
item._PRIVATE_deserialize(in);
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_FINE_HOG_IMaGE_H__
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_FINE_HOG_IMaGE_ABSTRACT_H__
#ifdef DLIB_FINE_HOG_IMaGE_ABSTRACT_H__
#include "../array2d.h"
#include "../matrix.h"
#include "hog_abstract.h"
namespace dlib
{
template <
unsigned long cell_size_,
unsigned long block_size_,
unsigned long pixel_stride_,
unsigned char num_orientation_bins_,
int gradient_type_
>
class fine_hog_image : noncopyable
{
/*!
REQUIREMENTS ON TEMPLATE PARAMETERS
- cell_size_ > 1
- block_size_ > 0
- pixel_stride_ > 0
- num_orientation_bins_ > 0
- gradient_type_ == hog_signed_gradient or hog_unsigned_gradient
INITIAL VALUE
- size() == 0
WHAT THIS OBJECT REPRESENTS
This object is a version of the hog_image that allows you to extract HOG
features at a finer resolution. The hog_image can only extract HOG features
cell_size_ pixels apart. However, this object, the fine_hog_image can
extract HOG features from every pixel location.
The template arguments to this class have the same meaning as they do for
the hog_image, except for pixel_stride_. This controls the stepping between
HOG extraction locations. A value of 1 indicates HOG features should be
extracted from every pixel location. A value of 2 indicates every other pixel
location, etc.
Finally, note that the interpolation used by this object is equivalent
to using hog_angle_interpolation with hog_image.
THREAD SAFETY
Concurrent access to an instance of this object is not safe and should be protected
by a mutex lock except for the case where you are copying the configuration
(via copy_configuration()) of a fine_hog_image object to many other threads.
In this case, it is safe to copy the configuration of a shared object so long
as no other operations are performed on it.
!*/
public:
const static unsigned long cell_size = cell_size_;
const static unsigned long block_size = block_size_;
const static unsigned long pixel_stride = pixel_stride_;
const static unsigned long num_orientation_bins = num_orientation_bins_;
const static int gradient_type = gradient_type_;
const static long min_size = cell_size*block_size+2;
typedef matrix<double, block_size*block_size*num_orientation_bins, 1> descriptor_type;
fine_hog_image (
);
/*!
ensures
- this object is properly initialized
!*/
void clear (
);
/*!
ensures
- this object will have its initial value
!*/
void copy_configuration (
const fine_hog_image&
);
/*!
ensures
- copies all the state information of item into *this, except for state
information populated by load(). More precisely, given two fine_hog_image
objects H1 and H2, the following sequence of instructions should always
result in both of them having the exact same state.
H2.copy_configuration(H1);
H1.load(img);
H2.load(img);
!*/
template <
typename image_type
>
inline void load (
const image_type& img
);
/*!
requires
- image_type is a dlib::matrix or something convertible to a matrix
via array_to_matrix()
- pixel_traits<typename image_type::type>::has_alpha == false
ensures
- if (img.nr() < min_size || img.nc() < min_size) then
- the image is too small so we don't compute anything on it
- #size() == 0
- else
- generates a HOG image from the given image.
- #size() > 0
!*/
inline void unload(
);
/*!
ensures
- #nr() == 0
- #nc() == 0
- clears only the state information which is populated by load(). For
example, let H be a fine_hog_image object. Then consider the two
sequences of instructions:
Sequence 1:
H.load(img);
H.unload();
H.load(img);
Sequence 2:
H.load(img);
Both sequence 1 and sequence 2 should have the same effect on H.
!*/
inline unsigned long size (
) const;
/*!
ensures
- returns nr()*nc()
!*/
inline long nr (
) const;
/*!
ensures
- returns the number of rows in this HOG image
!*/
inline long nc (
) const;
/*!
ensures
- returns the number of columns in this HOG image
!*/
long get_num_dimensions (
) const;
/*!
ensures
- returns the number of dimensions in the feature vectors generated by
this object.
- In particular, returns the value block_size*block_size*num_orientation_bins
!*/
inline const descriptor_type& operator() (
long row,
long col
) const;
/*!
requires
- 0 <= row < nr()
- 0 <= col < nc()
ensures
- returns the descriptor for the HOG block at the given row and column. This descriptor
will include information from a window that is located at get_block_rect(row,col) in
the original image given to load().
- The returned descriptor vector will have get_num_dimensions() elements.
!*/
const rectangle get_block_rect (
long row,
long col
) const;
/*!
ensures
- returns a rectangle that tells you what part of the original image is associated
with a particular HOG block. That is, what part of the input image is associated
with (*this)(row,col).
- The returned rectangle will be cell_size*block_size pixels wide and tall.
!*/
const point image_to_feat_space (
const point& p
) const;
/*!
ensures
- Each local feature is extracted from a certain point in the input image.
This function returns the identity of the local feature corresponding
to the image location p. Or in other words, let P == image_to_feat_space(p),
then (*this)(P.y(),P.x()) == the local feature closest to, or centered at,
the point p in the input image. Note that some image points might not have
corresponding feature locations. E.g. border points or points outside the
image. In these cases the returned point will be outside get_rect(*this).
!*/
const rectangle image_to_feat_space (
const rectangle& rect
) const;
/*!
ensures
- returns rectangle(image_to_feat_space(rect.tl_corner()), image_to_feat_space(rect.br_corner()));
(i.e. maps a rectangle from image space to feature space)
!*/
const point feat_to_image_space (
const point& p
) const;
/*!
ensures
- returns the location in the input image space corresponding to the center
of the local feature at point p. In other words, this function computes
the inverse of image_to_feat_space(). Note that it may only do so approximately,
since more than one image location might correspond to the same local feature.
That is, image_to_feat_space() might not be invertible so this function gives
the closest possible result.
!*/
const rectangle feat_to_image_space (
const rectangle& rect
) const;
/*!
ensures
- return rectangle(feat_to_image_space(rect.tl_corner()), feat_to_image_space(rect.br_corner()));
(i.e. maps a rectangle from feature space to image space)
!*/
};
// ----------------------------------------------------------------------------------------
template <
unsigned long T1,
unsigned long T2,
unsigned long T3,
unsigned char T4,
int T5
>
void serialize (
const fine_hog_image<T1,T2,T3,T4,T5>& item,
std::ostream& out
);
/*!
provides serialization support
!*/
template <
unsigned long T1,
unsigned long T2,
unsigned long T3,
unsigned char T4,
int T5
>
void deserialize (
fine_hog_image<T1,T2,T3,T4,T5>& item,
std::istream& in
);
/*!
provides deserialization support
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_FINE_HOG_IMaGE_ABSTRACT_H__
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment