Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
daa2adbd
Commit
daa2adbd
authored
Mar 20, 2017
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added solve_qp_box_constrained_blockdiag()
parent
096ab3c8
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
396 additions
and
0 deletions
+396
-0
optimization_solve_qp_using_smo.h
dlib/optimization/optimization_solve_qp_using_smo.h
+250
-0
optimization_solve_qp_using_smo_abstract.h
dlib/optimization/optimization_solve_qp_using_smo_abstract.h
+70
-0
opt_qp_solver.cpp
dlib/test/opt_qp_solver.cpp
+76
-0
No files found.
dlib/optimization/optimization_solve_qp_using_smo.h
View file @
daa2adbd
...
...
@@ -5,6 +5,8 @@
#include "optimization_solve_qp_using_smo_abstract.h"
#include "../matrix.h"
#include <map>
#include "../unordered_pair.h"
namespace
dlib
{
...
...
@@ -548,6 +550,254 @@ namespace dlib
return
iter
+
1
;
}
// ----------------------------------------------------------------------------------------
template
<
typename
T
,
long
NR
,
long
NC
,
typename
MM
,
typename
L
>
unsigned
long
solve_qp_box_constrained_blockdiag
(
const
std
::
vector
<
matrix
<
T
,
NR
,
NR
,
MM
,
L
>>&
Q_blocks
,
const
std
::
vector
<
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>&
bs
,
const
std
::
map
<
unordered_pair
<
size_t
>
,
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>&
Q_offdiag
,
std
::
vector
<
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>&
alphas
,
const
std
::
vector
<
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>&
lowers
,
const
std
::
vector
<
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>&
uppers
,
T
eps
,
unsigned
long
max_iter
)
{
// make sure requires clause is not broken
DLIB_CASSERT
(
Q_blocks
.
size
()
>
0
);
DLIB_CASSERT
(
Q_blocks
.
size
()
==
bs
.
size
()
&&
Q_blocks
.
size
()
==
alphas
.
size
()
&&
Q_blocks
.
size
()
==
lowers
.
size
()
&&
Q_blocks
.
size
()
==
uppers
.
size
(),
"Q_blocks.size(): "
<<
Q_blocks
.
size
()
<<
"
\n
"
<<
"bs.size(): "
<<
bs
.
size
()
<<
"
\n
"
<<
"alphas.size(): "
<<
alphas
.
size
()
<<
"
\n
"
<<
"lowers.size(): "
<<
lowers
.
size
()
<<
"
\n
"
<<
"uppers.size(): "
<<
uppers
.
size
()
<<
"
\n
"
);
for
(
auto
&
Q
:
Q_blocks
)
{
DLIB_CASSERT
(
Q
.
nr
()
==
Q
.
nc
(),
"All the matrices in Q_blocks have the same dimensions."
);
DLIB_CASSERT
(
Q
.
nr
()
==
Q_blocks
[
0
].
nr
()
&&
Q
.
nc
()
==
Q_blocks
[
0
].
nc
(),
"All the matrices in Q_blocks have the same dimensions."
);
}
#ifdef ENABLE_ASSERTS
for
(
size_t
i
=
0
;
i
<
alphas
.
size
();
++
i
)
{
DLIB_CASSERT
(
is_col_vector
(
bs
[
i
])
&&
bs
[
i
].
size
()
==
Q_blocks
[
0
].
nr
(),
"is_col_vector(bs["
<<
i
<<
"]): "
<<
is_col_vector
(
bs
[
i
])
<<
"
\n
"
<<
"bs["
<<
i
<<
"].size(): "
<<
bs
[
i
].
size
()
<<
"
\n
"
<<
"Q_blocks[0].nr(): "
<<
Q_blocks
[
0
].
nr
());
for
(
auto
&
Qoffdiag
:
Q_offdiag
)
{
auto
&
Q_offdiag_element
=
Qoffdiag
.
second
;
long
r
=
Qoffdiag
.
first
.
first
;
long
c
=
Qoffdiag
.
first
.
second
;
DLIB_CASSERT
(
is_col_vector
(
Q_offdiag_element
)
&&
Q_offdiag_element
.
size
()
==
Q_blocks
[
0
].
nr
(),
"is_col_vector(Q_offdiag["
<<
r
<<
","
<<
c
<<
"]): "
<<
is_col_vector
(
Q_offdiag_element
)
<<
"
\n
"
<<
"Q_offdiag["
<<
r
<<
","
<<
c
<<
"].size(): "
<<
Q_offdiag_element
.
size
()
<<
"
\n
"
<<
"Q_blocks[0].nr(): "
<<
Q_blocks
[
0
].
nr
());
}
DLIB_CASSERT
(
is_col_vector
(
alphas
[
i
])
&&
alphas
[
i
].
size
()
==
Q_blocks
[
0
].
nr
(),
"is_col_vector(alphas["
<<
i
<<
"]): "
<<
is_col_vector
(
alphas
[
i
])
<<
"
\n
"
<<
"alphas["
<<
i
<<
"].size(): "
<<
alphas
[
i
].
size
()
<<
"
\n
"
<<
"Q_blocks[0].nr(): "
<<
Q_blocks
[
0
].
nr
());
DLIB_CASSERT
(
is_col_vector
(
lowers
[
i
])
&&
lowers
[
i
].
size
()
==
Q_blocks
[
0
].
nr
(),
"is_col_vector(lowers["
<<
i
<<
"]): "
<<
is_col_vector
(
lowers
[
i
])
<<
"
\n
"
<<
"lowers["
<<
i
<<
"].size(): "
<<
lowers
[
i
].
size
()
<<
"
\n
"
<<
"Q_blocks[0].nr(): "
<<
Q_blocks
[
0
].
nr
());
DLIB_CASSERT
(
is_col_vector
(
uppers
[
i
])
&&
uppers
[
i
].
size
()
==
Q_blocks
[
0
].
nr
(),
"is_col_vector(uppers["
<<
i
<<
"]): "
<<
is_col_vector
(
uppers
[
i
])
<<
"
\n
"
<<
"uppers["
<<
i
<<
"].size(): "
<<
uppers
[
i
].
size
()
<<
"
\n
"
<<
"Q_blocks[0].nr(): "
<<
Q_blocks
[
0
].
nr
());
DLIB_CASSERT
(
0
<=
min
(
alphas
[
i
]
-
lowers
[
i
]),
"min(alphas["
<<
i
<<
"]-lowers["
<<
i
<<
"]): "
<<
min
(
alphas
[
i
]
-
lowers
[
i
]));
DLIB_CASSERT
(
0
<=
max
(
uppers
[
i
]
-
alphas
[
i
]),
"max(uppers["
<<
i
<<
"]-alphas["
<<
i
<<
"]): "
<<
max
(
uppers
[
i
]
-
alphas
[
i
]));
}
DLIB_CASSERT
(
eps
>
0
&&
max_iter
>
0
,
"eps: "
<<
eps
<<
"
\n
max_iter: "
<<
max_iter
);
#endif // ENABLE_ASSERTS
// Compute f'(alpha) (i.e. the gradient of f(alpha)) for the current alpha.
std
::
vector
<
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>
df
;
// = Q*alpha + b;
auto
compute_df
=
[
&
]()
{
df
.
resize
(
Q_blocks
.
size
());
for
(
size_t
i
=
0
;
i
<
df
.
size
();
++
i
)
df
[
i
]
=
Q_blocks
[
i
]
*
alphas
[
i
]
+
bs
[
i
];
// Don't forget to include the Q_offdiag terms in the computation
for
(
auto
&
p
:
Q_offdiag
)
{
long
r
=
p
.
first
.
first
;
long
c
=
p
.
first
.
second
;
df
[
r
]
+=
pointwise_multiply
(
p
.
second
,
alphas
[
c
]);
if
(
r
!=
c
)
df
[
c
]
+=
pointwise_multiply
(
p
.
second
,
alphas
[
r
]);
}
};
compute_df
();
std
::
vector
<
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>
Q_diag
,
Q_ggd
;
std
::
vector
<
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>
QQ
;
// = reciprocal_max(diag(Q));
QQ
.
resize
(
Q_blocks
.
size
());
Q_diag
.
resize
(
Q_blocks
.
size
());
Q_ggd
.
resize
(
Q_blocks
.
size
());
// We need to get an upper bound on the Lipschitz constant for this QP. Since that
// is just the max eigenvalue of Q we can do it using Gershgorin disks.
//const T lipschitz_bound = max(diag(Q) + (sum_cols(abs(Q)) - abs(diag(Q))));
for
(
size_t
i
=
0
;
i
<
QQ
.
size
();
++
i
)
{
auto
f
=
Q_offdiag
.
find
(
make_unordered_pair
(
i
,
i
));
if
(
f
!=
Q_offdiag
.
end
())
Q_diag
[
i
]
=
diag
(
Q_blocks
[
i
])
+
f
->
second
;
else
Q_diag
[
i
]
=
diag
(
Q_blocks
[
i
]);
QQ
[
i
]
=
reciprocal_max
(
Q_diag
[
i
]);
Q_ggd
[
i
]
=
Q_diag
[
i
]
+
(
sum_cols
(
abs
(
Q_blocks
[
i
]))
-
abs
(
diag
(
Q_blocks
[
i
])));
}
for
(
auto
&
p
:
Q_offdiag
)
{
long
r
=
p
.
first
.
first
;
long
c
=
p
.
first
.
second
;
if
(
r
!=
c
)
{
Q_ggd
[
r
]
+=
abs
(
p
.
second
);
Q_ggd
[
c
]
+=
abs
(
p
.
second
);
}
}
T
lipschitz_bound
=
-
std
::
numeric_limits
<
T
>::
infinity
();
for
(
auto
&
x
:
Q_ggd
)
lipschitz_bound
=
std
::
max
(
lipschitz_bound
,
max
(
x
));
const
long
num_variables
=
alphas
.
size
()
*
alphas
[
0
].
size
();
// First we use a coordinate descent method to initialize alpha.
double
max_df
=
0
;
for
(
long
iter
=
0
;
iter
<
num_variables
*
2
;
++
iter
)
{
max_df
=
0
;
long
best_r
=
0
;
size_t
best_r2
=
0
;
// find the best alpha to optimize.
for
(
size_t
r2
=
0
;
r2
<
alphas
.
size
();
++
r2
)
{
auto
&
alpha
=
alphas
[
r2
];
auto
&
df_
=
df
[
r2
];
auto
&
lower
=
lowers
[
r2
];
auto
&
upper
=
uppers
[
r2
];
for
(
long
r
=
0
;
r
<
alpha
.
nr
();
++
r
)
{
if
(
alpha
(
r
)
<=
lower
(
r
)
&&
df_
(
r
)
>
0
)
;
//alpha(r) = lower(r);
else
if
(
alpha
(
r
)
>=
upper
(
r
)
&&
df_
(
r
)
<
0
)
;
//alpha(r) = upper(r);
else
if
(
std
::
abs
(
df_
(
r
))
>
max_df
)
{
best_r
=
r
;
best_r2
=
r2
;
max_df
=
std
::
abs
(
df_
(
r
));
}
}
}
// now optimize alphas[best_r2](best_r)
const
long
r
=
best_r
;
auto
&
alpha
=
alphas
[
best_r2
];
auto
&
lower
=
lowers
[
best_r2
];
auto
&
upper
=
uppers
[
best_r2
];
auto
&
df_
=
df
[
best_r2
];
const
T
old_alpha
=
alpha
(
r
);
alpha
(
r
)
=
-
(
df_
(
r
)
-
Q_diag
[
best_r2
](
r
)
*
alpha
(
r
))
*
QQ
[
best_r2
](
r
);
if
(
alpha
(
r
)
<
lower
(
r
))
alpha
(
r
)
=
lower
(
r
);
else
if
(
alpha
(
r
)
>
upper
(
r
))
alpha
(
r
)
=
upper
(
r
);
const
T
delta
=
old_alpha
-
alpha
(
r
);
// Now update the gradient. We will perform the equivalent of: df = Q*alpha +
// b; except we only need to compute one column of the matrix multiply because
// only one element of alpha changed.
auto
&
Q
=
Q_blocks
[
best_r2
];
for
(
long
k
=
0
;
k
<
df_
.
nr
();
++
k
)
df_
(
k
)
-=
Q
(
r
,
k
)
*
delta
;
for
(
size_t
j
=
0
;
j
<
Q_blocks
.
size
();
++
j
)
{
auto
f
=
Q_offdiag
.
find
(
make_unordered_pair
(
best_r2
,
j
));
if
(
f
!=
Q_offdiag
.
end
())
df
[
j
](
r
)
-=
f
->
second
(
r
)
*
delta
;
}
}
std
::
vector
<
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>
v
(
alphas
),
v_old
(
alphas
.
size
());
for
(
size_t
i
=
0
;
i
<
v_old
.
size
();
++
i
)
v_old
[
i
].
set_size
(
alphas
.
size
());
double
lambda
=
0
;
unsigned
long
iter
;
// Now do the main iteration block of this solver. The coordinate descent method
// we used above can improve the objective rapidly in the beginning. However,
// Nesterov's method has more rapid convergence once it gets going so this is what
// we use for the main iteration.
for
(
iter
=
0
;
iter
<
max_iter
;
++
iter
)
{
const
double
next_lambda
=
(
1
+
std
::
sqrt
(
1
+
4
*
lambda
*
lambda
))
/
2
;
const
double
gamma
=
(
1
-
lambda
)
/
next_lambda
;
lambda
=
next_lambda
;
v_old
.
swap
(
v
);
//df = Q*alpha + b;
compute_df
();
// now take a projected gradient step using Nesterov's method.
for
(
size_t
j
=
0
;
j
<
alphas
.
size
();
++
j
)
{
v
[
j
]
=
clamp
(
alphas
[
j
]
-
1
.
0
/
lipschitz_bound
*
df
[
j
],
lowers
[
j
],
uppers
[
j
]);
alphas
[
j
]
=
clamp
((
1
-
gamma
)
*
v
[
j
]
+
gamma
*
v_old
[
j
],
lowers
[
j
],
uppers
[
j
]);
}
// check for convergence every 10 iterations
if
(
iter
%
10
==
0
)
{
max_df
=
0
;
for
(
size_t
r2
=
0
;
r2
<
alphas
.
size
();
++
r2
)
{
auto
&
alpha
=
alphas
[
r2
];
auto
&
df_
=
df
[
r2
];
auto
&
lower
=
lowers
[
r2
];
auto
&
upper
=
uppers
[
r2
];
for
(
long
r
=
0
;
r
<
alpha
.
nr
();
++
r
)
{
if
(
alpha
(
r
)
<=
lower
(
r
)
&&
df_
(
r
)
>
0
)
;
//alpha(r) = lower(r);
else
if
(
alpha
(
r
)
>=
upper
(
r
)
&&
df_
(
r
)
<
0
)
;
//alpha(r) = upper(r);
else
if
(
std
::
abs
(
df_
(
r
))
>
max_df
)
max_df
=
std
::
abs
(
df_
(
r
));
}
}
if
(
max_df
<
eps
)
break
;
}
}
return
iter
+
1
;
}
// ----------------------------------------------------------------------------------------
template
<
...
...
dlib/optimization/optimization_solve_qp_using_smo_abstract.h
View file @
daa2adbd
...
...
@@ -4,6 +4,8 @@
#ifdef DLIB_OPTIMIZATION_SOLVE_QP_UsING_SMO_ABSTRACT_Hh_
#include "../matrix.h"
#include <map>
#include "../unordered_pair.h"
namespace
dlib
{
...
...
@@ -162,6 +164,74 @@ namespace dlib
converge to eps accuracy then the number returned will be max_iter+1.
!*/
// ----------------------------------------------------------------------------------------
template
<
typename
T
,
long
NR
,
long
NC
,
typename
MM
,
typename
L
>
unsigned
long
solve_qp_box_constrained_blockdiag
(
const
std
::
vector
<
matrix
<
T
,
NR
,
NR
,
MM
,
L
>>&
Q_blocks
,
const
std
::
vector
<
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>&
bs
,
const
std
::
map
<
unordered_pair
<
size_t
>
,
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>&
Q_offdiag
,
std
::
vector
<
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>&
alphas
,
const
std
::
vector
<
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>&
lowers
,
const
std
::
vector
<
matrix
<
T
,
NR
,
NC
,
MM
,
L
>>&
uppers
,
T
eps
,
unsigned
long
max_iter
);
/*!
requires
- Q_blocks.size() > 0
- Q_blocks.size() == bs.size() == alphas.size() == lowers.size() == uppers.size()
- All the matrices in Q_blocks have the same dimensions. Moreover, they are square
matrices.
- All the matrices in bs, Q_offdiag, alphas, lowers, and uppers have the same
dimensions. Moreover, they are all column vectors.
- Q_blocks[0].nr() == alphas[0].size()
(i.e. the dimensionality of the column vectors in alphas must match the
dimensionality of the square matrices in Q_blocks.)
- for all valid i:
- 0 <= min(alphas[i]-lowers[i])
- 0 <= max(uppers[i]-alphas[i])
- eps > 0
- max_iter > 0
ensures
- This function solves the same QP as solve_qp_box_constrained(), except it is
optimized for the case where the Q matrix has a certain sparsity structure.
To be precise:
- Let Q1 be a block diagonal matrix with the elements of Q_blocks placed
along its diagonal, and in the order contained in Q_blocks.
- Let Q2 be a matrix with the same size as Q1, except instead of being block diagonal, it
is block structured into Q_blocks.nr() by Q_blocks.nc() blocks. If we let (r,c) be the
coordinate of each block then each block contains the matrix
diagm(Q_offdiag[make_unordered_pair(r,c)]) or the zero matrix if Q_offdiag has no entry
for the coordinate (r,c).
- Let Q == Q1+Q2
- Let b == the concatenation of all the vectors in bs into one big vector.
- Let alpha == the concatenation of all the vectors in alphas into one big vector.
- Let lower == the concatenation of all the vectors in lowers into one big vector.
- Let upper == the concatenation of all the vectors in uppers into one big vector.
- Then this function solves the following quadratic program:
Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha + trans(b)*alpha
subject to the following box constraints on alpha:
- 0 <= min(alpha-lower)
- 0 <= max(upper-alpha)
Where f is convex. This means that Q should be positive-semidefinite.
- More specifically, this function is identical to
solve_qp_box_constrained(Q, b, alpha, lower, upper, eps, max_iter),
except that it runs faster since it avoids unnecessary computation by
taking advantage of the sparsity structure in the QP.
- The solution to the above QP will be stored in #alphas.
- This function uses a combination of a SMO algorithm along with Nesterov's
method as the main iteration of the solver. It starts the algorithm with the
given alpha and it works on the problem until the derivative of f(alpha) is
smaller than eps for each element of alpha or the alpha value is at a box
constraint. So eps controls how accurate the solution is and smaller values
result in better solutions.
- At most max_iter iterations of optimization will be performed.
- returns the number of iterations performed. If this method fails to
converge to eps accuracy then the number returned will be max_iter+1.
!*/
// ----------------------------------------------------------------------------------------
template
<
...
...
dlib/test/opt_qp_solver.cpp
View file @
daa2adbd
...
...
@@ -507,6 +507,81 @@ namespace
DLIB_TEST
(
length
(
A
*
c1
-
B
*
c2
)
<
4
);
}
// ----------------------------------------------------------------------------------------
void
test_solve_qp_box_constrained_blockdiag
()
{
dlib
::
rand
rnd
;
for
(
int
iter
=
0
;
iter
<
50
;
++
iter
)
{
print_spinner
();
matrix
<
double
>
Q1
,
Q2
;
matrix
<
double
,
0
,
1
>
b1
,
b2
;
Q1
=
randm
(
4
,
4
,
rnd
);
Q1
=
Q1
*
trans
(
Q1
);
Q2
=
randm
(
4
,
4
,
rnd
);
Q2
=
Q2
*
trans
(
Q2
);
b1
=
gaussian_randm
(
4
,
1
,
iter
*
2
+
0
);
b2
=
gaussian_randm
(
4
,
1
,
iter
*
2
+
1
);
std
::
map
<
unordered_pair
<
size_t
>
,
matrix
<
double
,
0
,
1
>>
offdiag
;
if
(
rnd
.
get_random_gaussian
()
>
0
)
offdiag
[
make_unordered_pair
(
0
,
0
)]
=
randm
(
4
,
1
,
rnd
);
if
(
rnd
.
get_random_gaussian
()
>
0
)
offdiag
[
make_unordered_pair
(
1
,
0
)]
=
randm
(
4
,
1
,
rnd
);
if
(
rnd
.
get_random_gaussian
()
>
0
)
offdiag
[
make_unordered_pair
(
1
,
1
)]
=
randm
(
4
,
1
,
rnd
);
std
::
vector
<
matrix
<
double
>>
Q_blocks
=
{
Q1
,
Q2
};
std
::
vector
<
matrix
<
double
,
0
,
1
>>
bs
=
{
b1
,
b2
};
// make the single big Q and b
matrix
<
double
>
Q
=
join_cols
(
join_rows
(
Q1
,
zeros_matrix
(
Q1
)),
join_rows
(
zeros_matrix
(
Q2
),
Q2
));
matrix
<
double
,
0
,
1
>
b
=
join_cols
(
b1
,
b2
);
for
(
auto
&
p
:
offdiag
)
{
long
r
=
p
.
first
.
first
;
long
c
=
p
.
first
.
second
;
set_subm
(
Q
,
4
*
r
,
4
*
c
,
4
,
4
)
+=
diagm
(
p
.
second
);
if
(
c
!=
r
)
set_subm
(
Q
,
4
*
c
,
4
*
r
,
4
,
4
)
+=
diagm
(
p
.
second
);
}
matrix
<
double
,
0
,
1
>
alpha
=
zeros_matrix
(
b
);
matrix
<
double
,
0
,
1
>
lower
=
-
10000
*
ones_matrix
(
b
);
matrix
<
double
,
0
,
1
>
upper
=
10000
*
ones_matrix
(
b
);
auto
iters
=
solve_qp_box_constrained
(
Q
,
b
,
alpha
,
lower
,
upper
,
1e-9
,
10000
);
dlog
<<
LINFO
<<
"iters: "
<<
iters
;
dlog
<<
LINFO
<<
"alpha: "
<<
trans
(
alpha
);
dlog
<<
LINFO
;
std
::
vector
<
matrix
<
double
,
0
,
1
>>
alphas
(
2
);
alphas
[
0
]
=
zeros_matrix
<
double
>
(
4
,
1
);
alphas
[
1
]
=
zeros_matrix
<
double
>
(
4
,
1
);
lower
=
-
10000
*
ones_matrix
(
alphas
[
0
]);
upper
=
10000
*
ones_matrix
(
alphas
[
0
]);
std
::
vector
<
matrix
<
double
,
0
,
1
>>
lowers
=
{
lower
,
lower
},
uppers
=
{
upper
,
upper
};
auto
iters2
=
solve_qp_box_constrained_blockdiag
(
Q_blocks
,
bs
,
offdiag
,
alphas
,
lowers
,
uppers
,
1e-9
,
10000
);
dlog
<<
LINFO
<<
"iters2: "
<<
iters2
;
dlog
<<
LINFO
<<
"alpha: "
<<
trans
(
join_cols
(
alphas
[
0
],
alphas
[
1
]));
dlog
<<
LINFO
<<
"obj1: "
<<
0.5
*
trans
(
alpha
)
*
Q
*
alpha
+
trans
(
b
)
*
alpha
;
dlog
<<
LINFO
<<
"obj2: "
<<
0.5
*
trans
(
join_cols
(
alphas
[
0
],
alphas
[
1
]))
*
Q
*
join_cols
(
alphas
[
0
],
alphas
[
1
])
+
trans
(
b
)
*
join_cols
(
alphas
[
0
],
alphas
[
1
]);
dlog
<<
LINFO
<<
"obj1-obj2: "
<<
(
0.5
*
trans
(
alpha
)
*
Q
*
alpha
+
trans
(
b
)
*
alpha
)
-
(
0.5
*
trans
(
join_cols
(
alphas
[
0
],
alphas
[
1
]))
*
Q
*
join_cols
(
alphas
[
0
],
alphas
[
1
])
+
trans
(
b
)
*
join_cols
(
alphas
[
0
],
alphas
[
1
]));
DLIB_TEST_MSG
(
max
(
abs
(
alpha
-
join_cols
(
alphas
[
0
],
alphas
[
1
])))
<
1e-6
,
max
(
abs
(
alpha
-
join_cols
(
alphas
[
0
],
alphas
[
1
]))));
DLIB_TEST
(
iters
==
iters2
);
}
}
// ----------------------------------------------------------------------------------------
class
opt_qp_solver_tester
:
public
tester
...
...
@@ -566,6 +641,7 @@ namespace
test_find_gap_between_convex_hulls
();
test_solve_qp_box_constrained_blockdiag
();
}
double
do_the_test
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment