Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
dfd9543c
Commit
dfd9543c
authored
Apr 26, 2016
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Made the elastic_net inputs be in terms of trans(X)*X and trans(X)*Y rather
than raw X and Y matrices.
parent
69a12074
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
58 additions
and
44 deletions
+58
-44
elastic_net.h
dlib/optimization/elastic_net.h
+29
-26
elastic_net_abstract.h
dlib/optimization/elastic_net_abstract.h
+28
-17
elastic_net.cpp
dlib/test/elastic_net.cpp
+1
-1
No files found.
dlib/optimization/elastic_net.h
View file @
dfd9543c
...
...
@@ -17,13 +17,16 @@ namespace dlib
template
<
typename
EXP
>
explicit
elastic_net
(
const
matrix_exp
<
EXP
>&
X
_
const
matrix_exp
<
EXP
>&
X
X
)
:
eps
(
1e-5
),
max_iterations
(
50000
),
verbose
(
false
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
X_
.
size
()
>
0
,
"
\t
elastic_net::elastic_net(X)"
<<
"
\n\t
X can't be empty"
DLIB_ASSERT
(
XX
.
size
()
>
0
&&
XX
.
nr
()
==
XX
.
nc
(),
"
\t
elastic_net::elastic_net(XX)"
<<
"
\n\t
XX must be a non-empty square matrix."
<<
"
\n\t
XX.nr(): "
<<
XX
.
nr
()
<<
"
\n\t
XX.nc(): "
<<
XX
.
nc
()
<<
"
\n\t
this: "
<<
this
);
...
...
@@ -32,13 +35,11 @@ namespace dlib
// rows then we can get rid of them by doing some SVD magic. Doing this doesn't
// make the final results of anything change but makes all the matrices have
// dimensions that are X.nr() in size, which can be much smaller.
matrix
<
double
>
XX
;
XX
=
X_
*
trans
(
X_
);
matrix
<
double
,
0
,
1
>
s
;
svd3
(
XX
,
u
,
eig_vals
,
eig_vects
);
s
=
sqrt
(
eig_vals
);
X
=
eig_vects
*
diagm
(
s
);
u
=
trans
(
X_
)
*
tmp
(
eig_vects
*
inv
(
diagm
(
s
)
));
u
=
eig_vects
*
inv
(
diagm
(
s
));
...
...
@@ -65,46 +66,48 @@ namespace dlib
template
<
typename
EXP1
,
typename
EXP2
>
elastic_net
(
const
matrix_exp
<
EXP1
>&
X
_
,
const
matrix_exp
<
EXP2
>&
Y_
)
:
elastic_net
(
X
_
)
const
matrix_exp
<
EXP1
>&
X
X
,
const
matrix_exp
<
EXP2
>&
XY
)
:
elastic_net
(
X
X
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
X_
.
size
()
>
0
&&
is_col_vector
(
Y_
)
&&
X_
.
nc
()
==
Y_
.
size
()
,
"
\t
elastic_net::elastic_net(X,Y)"
DLIB_ASSERT
(
XX
.
size
()
>
0
&&
XX
.
nr
()
==
XX
.
nc
()
&&
is_col_vector
(
XY
)
&&
XX
.
nc
()
==
XY
.
size
()
,
"
\t
elastic_net::elastic_net(XX,XY)"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
X_.size(): "
<<
X_
.
size
()
<<
"
\n\t
is_col_vector(Y_): "
<<
is_col_vector
(
Y_
)
<<
"
\n\t
X_.nc(): "
<<
X_
.
nc
()
<<
"
\n\t
Y_.size(): "
<<
Y_
.
size
()
<<
"
\n\t
XX.size(): "
<<
XX
.
size
()
<<
"
\n\t
is_col_vector(XY): "
<<
is_col_vector
(
XY
)
<<
"
\n\t
XX.nr(): "
<<
XX
.
nr
()
<<
"
\n\t
XX.nc(): "
<<
XX
.
nc
()
<<
"
\n\t
XY.size(): "
<<
XY
.
size
()
<<
"
\n\t
this: "
<<
this
);
set_
y
(
Y_
);
set_
xy
(
XY
);
}
long
size
(
)
const
{
return
u
.
nr
();
}
template
<
typename
EXP
>
void
set_y
(
const
matrix_exp
<
EXP
>&
Y_
void
set_
x
y
(
const
matrix_exp
<
EXP
>&
XY
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
is_col_vector
(
Y_
)
&&
Y_
.
size
()
==
size
(),
DLIB_ASSERT
(
is_col_vector
(
XY
)
&&
XY
.
size
()
==
size
(),
"
\t
void elastic_net::set_y(Y)"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
is_col_vector(
Y_): "
<<
is_col_vector
(
Y_
)
<<
"
\n\t
is_col_vector(
XY): "
<<
is_col_vector
(
XY
)
<<
"
\n\t
size(): "
<<
size
()
<<
"
\n\t
Y_.size(): "
<<
Y_
.
size
()
<<
"
\n\t
XY.size(): "
<<
XY
.
size
()
<<
"
\n\t
this: "
<<
this
);
Y
=
trans
(
u
)
*
Y_
;
Y
=
trans
(
u
)
*
XY
;
// We can use the ynorm after it has been projected because the only place Y
// appears in the algorithm is in terms of dot products with w and x vectors.
// But those vectors are always in the span of X and therefore we only see the
...
...
dlib/optimization/elastic_net_abstract.h
View file @
dfd9543c
...
...
@@ -44,52 +44,61 @@ namespace dlib
template
<
typename
EXP
>
explicit
elastic_net
(
const
matrix_exp
<
EXP
>&
X
const
matrix_exp
<
EXP
>&
X
X
);
/*!
requires
- X.size() != 0
- XX.size() != 0
- XX.nr() == XX.nc()
ensures
- #get_epsilon() == 1e-5
- #get_max_iterations() == 50000
-
this object will not be verbose unless be_verbose() is called
- #size() == X.nc()
-
This object will not be verbose unless be_verbose() is called.
- #size() == X
X
.nc()
- #have_target_values() == false
- We interpret XX as trans(X)*X where X is as defined in the objective
function discussed above in WHAT THIS OBJECT REPRESENTS.
!*/
template
<
typename
EXP1
,
typename
EXP2
>
elastic_net
(
const
matrix_exp
<
EXP1
>&
X
,
const
matrix_exp
<
EXP2
>&
Y
const
matrix_exp
<
EXP1
>&
X
X
,
const
matrix_exp
<
EXP2
>&
X
Y
);
/*!
requires
- X.size() != 0
- is_col_vector(Y)
- X.nc() == Y.size()
- XX.size() != 0
- XX.nr() == XX.nc()
- is_col_vector(XY)
- XX.nc() == Y.size()
ensures
- constructs this object by calling the elastic_net(X
) constructor and then
calling this->set_y(
Y).
- constructs this object by calling the elastic_net(X
X) constructor and
then calling this->set_xy(X
Y).
- #have_target_values() == true
- We interpret XX as trans(X)*X where X is as defined in the objective
function discussed above in WHAT THIS OBJECT REPRESENTS. Similarly, XY
should be trans(X)*Y.
!*/
long
size
(
)
const
;
/*!
ensures
- returns the number of samples loaded into this object.
- returns the dimensionality of the data loaded into this object. That is,
how many elements are in the optimal w vector? This function returns
that number.
!*/
bool
have_target_values
(
)
const
;
/*!
ensures
- returns true if set_y() has been called and false otherwise.
- returns true if set_
x
y() has been called and false otherwise.
!*/
template
<
typename
EXP
>
void
set_y
(
const
matrix_exp
<
EXP
>&
Y
void
set_
x
y
(
const
matrix_exp
<
EXP
>&
X
Y
);
/*!
requires
...
...
@@ -97,8 +106,9 @@ namespace dlib
- Y.size() == size()
ensures
- #have_target_values() == true
- Sets the target values, the Y variable in the objective function, to the
given Y.
- Sets the target values of the regression. Note that we expect the given
matrix, XY, to be equal to trans(X)*Y, where X and Y have the definitions
discussed above in WHAT THIS OBJECT REPRESENTS.
!*/
void
set_epsilon
(
...
...
@@ -164,6 +174,7 @@ namespace dlib
ensures
- Solves the optimization problem described in the WHAT THIS OBJECT
REPRESENTS section above and returns the optimal w.
- The returned vector has size() elements.
- if (lasso_budget == infinity) then
- The lasso constraint is ignored
!*/
...
...
dlib/test/elastic_net.cpp
View file @
dfd9543c
...
...
@@ -95,7 +95,7 @@ namespace
double
lasso_budget
=
sum
(
abs
(
w
));
double
eps
=
0.0000001
;
dlib
::
elastic_net
solver
(
X
,
Y
);
dlib
::
elastic_net
solver
(
X
*
trans
(
X
),
X
*
Y
);
solver
.
set_epsilon
(
eps
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment