Commit e801bd6a authored by Patrick Snape's avatar Patrick Snape

Refactor the GUI code out

I also cleaned up a bunch of code. I'm not sure why the
simple_object_detector was keeping track of the upsample amount,
since it can't even be passed as an argument to the constructor.
Therefore, I removed the simple_object_detector_py and the second
declaration of the hog object detector. I also changed the
view code to optionally take keyword args of color and added
a single view of a rectangle.

Finally, I added viewing of the shape parts.
parent 697aecb4
...@@ -24,6 +24,7 @@ add_python_module(dlib ...@@ -24,6 +24,7 @@ add_python_module(dlib
src/image.cpp src/image.cpp
src/object_detection.cpp src/object_detection.cpp
src/shape_predictor.cpp src/shape_predictor.cpp
src/gui.cpp
) )
# When you run "make install" we will copy the compiled dlib.so (or dlib.pyd) # When you run "make install" we will copy the compiled dlib.so (or dlib.pyd)
......
...@@ -16,7 +16,7 @@ void bind_svm_struct(); ...@@ -16,7 +16,7 @@ void bind_svm_struct();
void bind_image_classes(); void bind_image_classes();
void bind_object_detection(); void bind_object_detection();
void bind_shape_predictors(); void bind_shape_predictors();
void bind_gui();
BOOST_PYTHON_MODULE(dlib) BOOST_PYTHON_MODULE(dlib)
{ {
...@@ -37,5 +37,6 @@ BOOST_PYTHON_MODULE(dlib) ...@@ -37,5 +37,6 @@ BOOST_PYTHON_MODULE(dlib)
bind_image_classes(); bind_image_classes();
bind_object_detection(); bind_object_detection();
bind_shape_predictors(); bind_shape_predictors();
bind_gui();
} }
#ifndef DLIB_NO_GUI_SUPPORT
#include <dlib/python.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing/render_face_detections.h>
#include <dlib/gui_widgets.h>
using namespace dlib;
using namespace std;
using namespace boost::python;
// ----------------------------------------------------------------------------------------
// Forward declaration of the simple_object_detector
typedef object_detector<scan_fhog_pyramid<pyramid_down<6> > > simple_object_detector;
void image_window_set_image_fhog_detector (
image_window& win,
const frontal_face_detector& det
)
{
win.set_image(draw_fhog(det));
}
void image_window_set_image_simple_detector (
image_window& win,
const simple_object_detector& det
)
{
win.set_image(draw_fhog(det));
}
// ----------------------------------------------------------------------------------------
void image_window_set_image (
image_window& win,
object img
)
{
if (is_gray_python_image(img))
return win.set_image(numpy_gray_image(img));
else if (is_rgb_python_image(img))
return win.set_image(numpy_rgb_image(img));
else
throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
}
void add_overlay_rect (
image_window& win,
const rectangle& rect,
const rgb_pixel& color
)
{
std::vector<rectangle> rects;
rects.push_back(rect);
win.add_overlay(rects, color);
}
void add_overlay_parts (
image_window& win,
const full_object_detection& detection,
const rgb_pixel& color
)
{
std::vector<full_object_detection> detections;
detections.push_back(detection);
win.add_overlay(render_face_detections(detections, color));
}
boost::shared_ptr<image_window> make_image_window_from_image(object img)
{
boost::shared_ptr<image_window> win(new image_window);
image_window_set_image(*win, img);
return win;
}
boost::shared_ptr<image_window> make_image_window_from_image_and_title(object img, const string& title)
{
boost::shared_ptr<image_window> win(new image_window);
image_window_set_image(*win, img);
win->set_title(title);
return win;
}
// ----------------------------------------------------------------------------------------
void bind_gui()
{
using boost::python::arg;
{
typedef image_window type;
typedef void (image_window::*set_title_funct)(const std::string&);
typedef void (image_window::*add_overlay_funct)(const std::vector<rectangle>& r, rgb_pixel p);
class_<type,boost::noncopyable>("image_window",
"This is a GUI window capable of showing images on the screen.")
.def("__init__", make_constructor(&make_image_window_from_image),
"Create an image window that displays the given numpy image.")
.def("__init__", make_constructor(&make_image_window_from_image_and_title),
"Create an image window that displays the given numpy image and also has the given title.")
.def("set_image", image_window_set_image, arg("image"),
"Make the image_window display the given image.")
.def("set_image", image_window_set_image_fhog_detector, arg("detector"),
"Make the image_window display the given HOG detector's filters.")
.def("set_image", image_window_set_image_simple_detector, arg("detector"),
"Make the image_window display the given HOG detector's filters.")
.def("set_title", (set_title_funct)&type::set_title, arg("title"),
"Set the title of the window to the given value.")
.def("clear_overlay", &type::clear_overlay, "Remove all overlays from the image_window.")
.def("add_overlay", (add_overlay_funct)&type::add_overlay<rgb_pixel>, (arg("rectangles"), arg("color")=rgb_pixel(255, 0, 0)),
"Add a list of rectangles to the image_window. They will be displayed as red boxes by default, but the color can be passed.")
.def("add_overlay", add_overlay_rect, (arg("rectangle"), arg("color")=rgb_pixel(255, 0, 0)),
"Add a rectangle to the image_window. It will be displayed as a red box by default, but the color can be passed.")
.def("add_overlay", add_overlay_parts, (arg("detection"), arg("color")=rgb_pixel(0, 0, 255)),
"Add full_object_detection parts to the image window. They will be displayed as blue lines by default, but the color can be passed.")
.def("wait_until_closed", &type::wait_until_closed,
"This function blocks until the window is closed.");
}
}
#endif
...@@ -6,10 +6,6 @@ ...@@ -6,10 +6,6 @@
#include <boost/python/args.hpp> #include <boost/python/args.hpp>
#include <dlib/geometry.h> #include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h> #include <dlib/image_processing/frontal_face_detector.h>
#ifndef DLIB_NO_GUI_SUPPORT
#include <dlib/image_processing/render_face_detections.h>
#include <dlib/gui_widgets.h>
#endif
#include "indexing.h" #include "indexing.h"
#include "simple_object_detector.h" #include "simple_object_detector.h"
#include "conversion.h" #include "conversion.h"
...@@ -52,8 +48,8 @@ string print_rectangle_repr(const rectangle& r) ...@@ -52,8 +48,8 @@ string print_rectangle_repr(const rectangle& r)
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
std::vector<rectangle> run_detector ( std::vector<rectangle> run_detector_with_upscale (
frontal_face_detector& detector, simple_object_detector& detector,
object img, object img,
const unsigned int upsampling_amount const unsigned int upsampling_amount
) )
...@@ -112,125 +108,6 @@ std::vector<rectangle> run_detector ( ...@@ -112,125 +108,6 @@ std::vector<rectangle> run_detector (
} }
} }
// ----------------------------------------------------------------------------------------
struct simple_object_detector_py
{
simple_object_detector detector;
unsigned int upsampling_amount;
std::vector<rectangle> run_detector1 (object img, const unsigned int upsampling_amount_)
{ return ::run_detector(detector, img, upsampling_amount_); }
std::vector<rectangle> run_detector2 (object img)
{ return ::run_detector(detector, img, upsampling_amount); }
};
void serialize (const simple_object_detector_py& item, std::ostream& out)
{
int version = 1;
serialize(item.detector, out);
serialize(version, out);
serialize(item.upsampling_amount, out);
}
void deserialize (simple_object_detector_py& item, std::istream& in)
{
int version = 0;
deserialize(item.detector, in);
deserialize(version, in);
if (version != 1)
throw dlib::serialization_error("Unexpected version found while deserializing a simple_object_detector.");
deserialize(item.upsampling_amount, in);
}
// ----------------------------------------------------------------------------------------
#ifndef DLIB_NO_GUI_SUPPORT
void image_window_set_image_fhog_detector (
image_window& win,
const frontal_face_detector& det
)
{
win.set_image(draw_fhog(det));
}
void image_window_set_image_simple_detector (
image_window& win,
const simple_object_detector_py& det
)
{
win.set_image(draw_fhog(det.detector));
}
void image_window_set_image (
image_window& win,
object img
)
{
if (is_gray_python_image(img))
return win.set_image(numpy_gray_image(img));
else if (is_rgb_python_image(img))
return win.set_image(numpy_rgb_image(img));
else
throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
}
void add_red_overlay_rects (
image_window& win,
const std::vector<rectangle>& rects
)
{
win.add_overlay(rects, rgb_pixel(255, 0, 0));
}
void add_overlay_parts (
image_window& win,
const object& pydetections,
const rgb_pixel& color
)
{
std::vector<full_object_detection> detections;
extract<boost::python::list> list_check(pydetections);
if (list_check.check())
{
const unsigned long num_detections = len(pydetections);
for (unsigned long i = 0; i < num_detections; ++i)
detections.push_back(extract<full_object_detection>(pydetections[i]));
}
else
{
detections.push_back(extract<full_object_detection>(pydetections));
}
win.add_overlay(render_face_detections(detections, color));
}
void add_blue_overlay_parts (
image_window& win,
const object& pydetections
)
{
add_overlay_parts(win, pydetections, rgb_pixel(0, 0, 255));
}
// ----------------------------------------------------------------------------------------
boost::shared_ptr<image_window> make_image_window_from_image(object img)
{
boost::shared_ptr<image_window> win(new image_window);
image_window_set_image(*win, img);
return win;
}
boost::shared_ptr<image_window> make_image_window_from_image_and_title(object img, const string& title)
{
boost::shared_ptr<image_window> win(new image_window);
image_window_set_image(*win, img);
win->set_title(title);
return win;
}
#endif
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
inline void train_simple_object_detector_on_images_py ( inline void train_simple_object_detector_on_images_py (
...@@ -471,7 +348,7 @@ ensures \n\ ...@@ -471,7 +348,7 @@ ensures \n\
metrics. " metrics. "
); );
{ {
typedef simple_object_detector_py type; typedef simple_object_detector type;
class_<type>("simple_object_detector", class_<type>("simple_object_detector",
"This object represents a sliding window histogram-of-oriented-gradients based object detector.") "This object represents a sliding window histogram-of-oriented-gradients based object detector.")
.def("__init__", make_constructor(&load_object_from_file<type>), .def("__init__", make_constructor(&load_object_from_file<type>),
...@@ -481,7 +358,7 @@ train_simple_object_detector() routine." ...@@ -481,7 +358,7 @@ train_simple_object_detector() routine."
Loads a simple_object_detector from a file that contains the output of the Loads a simple_object_detector from a file that contains the output of the
train_simple_object_detector() routine. train_simple_object_detector() routine.
!*/) !*/)
.def("__call__", &type::run_detector1, (arg("image"), arg("upsample_num_times")), .def("__call__", run_detector_with_upscale, (arg("image"), arg("upsample_num_times")=0),
"requires \n\ "requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB \n\ - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
image. \n\ image. \n\
...@@ -507,96 +384,8 @@ ensures \n\ ...@@ -507,96 +384,8 @@ ensures \n\
default will be used. default will be used.
!*/ !*/
) )
.def("__call__", &type::run_detector2, (arg("image")),
"requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
image. \n\
ensures \n\
- This function runs the object detector on the input image and returns \n\
a list of detections. "
/*!
requires
- image is a numpy ndarray containing either an 8bit grayscale or RGB
image.
ensures
- This function runs the object detector on the input image and returns
a list of detections.
!*/
)
.def_pickle(serialize_pickle<type>()); .def_pickle(serialize_pickle<type>());
} }
{
typedef frontal_face_detector type;
class_<type>("fhog_object_detector",
"This object represents a sliding window histogram-of-oriented-gradients based object detector.")
.def("__init__", make_constructor(&load_object_from_file<type>),
"Loads a fhog_object_detector from a file that contains a serialized \n\
object_detector<scan_fhog_pyramid<pyramid_down<6>>> object. " )
.def("__call__", &::run_detector, (arg("image"), arg("upsample_num_times")=0),
"requires \n\
- image is a numpy ndarray containing either an 8bit \n\
grayscale or RGB image. \n\
- upsample_num_times >= 0 \n\
ensures \n\
- This function runs the object detector on the input image \n\
and returns a list of detections. \n\
- You can detect smaller objects by upsampling the image \n\
before running the detector. This function can do that \n\
for you automatically if you set upsample_num_times to a \n\
non-zero value. Specifically, the image is doubled in \n\
size upsample_num_times times. "
/*!
requires
- image is a numpy ndarray containing either an 8bit
grayscale or RGB image.
- upsample_num_times >= 0
ensures
- This function runs the object detector on the input image
and returns a list of detections.
- You can detect smaller objects by upsampling the image
before running the detector. This function can do that
for you automatically if you set upsample_num_times to a
non-zero value. Specifically, the image is doubled in
size upsample_num_times times.
!*/
)
.def_pickle(serialize_pickle<type>());
}
#ifndef DLIB_NO_GUI_SUPPORT
{
typedef image_window type;
typedef void (image_window::*set_title_funct)(const std::string&);
typedef void (image_window::*add_overlay_funct)(const std::vector<rectangle>& r, rgb_pixel p);
class_<type,boost::noncopyable>("image_window",
"This is a GUI window capable of showing images on the screen.")
.def("__init__", make_constructor(&make_image_window_from_image),
"Create an image window that displays the given numpy image.")
.def("__init__", make_constructor(&make_image_window_from_image_and_title),
"Create an image window that displays the given numpy image and also has the given title.")
.def("set_image", image_window_set_image, arg("image"),
"Make the image_window display the given image.")
.def("set_image", image_window_set_image_fhog_detector, arg("detector"),
"Make the image_window display the given HOG detector's filters.")
.def("set_image", image_window_set_image_simple_detector, arg("detector"),
"Make the image_window display the given HOG detector's filters.")
.def("set_title", (set_title_funct)&type::set_title, arg("title"),
"Set the title of the window to the given value.")
.def("clear_overlay", &type::clear_overlay, "Remove all overlays from the image_window.")
.def("add_overlay", (add_overlay_funct)&type::add_overlay<rgb_pixel>, (arg("rectangles"), arg("color")),
"Add a list of rectangles to the image_window. They will be displayed as boxes of the given color.")
.def("add_overlay", add_red_overlay_rects,
"Add a list of rectangles to the image_window. They will be displayed as red boxes.")
.def("add_overlay", add_blue_overlay_parts,
"Add either a single or a list of full_object_detection parts to the image window. They will be displayed as blue lines.")
.def("add_overlay", add_overlay_parts, (arg("detections"), arg("color")),
"Add either a single or a list of full_object_detection parts to the image window. They will be displayed as lines of the given color.")
.def("wait_until_closed", &type::wait_until_closed,
"This function blocks until the window is closed.");
}
#endif
{ {
typedef std::vector<rectangle> type; typedef std::vector<rectangle> type;
class_<type>("rectangles", "An array of rectangle objects.") class_<type>("rectangles", "An array of rectangle objects.")
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment