Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
ea2a5184
Commit
ea2a5184
authored
May 17, 2011
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Cleaned up the code a little by pulling the caching logic out into its
own class.
parent
007e218e
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
158 additions
and
100 deletions
+158
-100
structural_svm_problem.h
dlib/svm/structural_svm_problem.h
+152
-95
structural_svm_problem_abstract.h
dlib/svm/structural_svm_problem_abstract.h
+6
-5
No files found.
dlib/svm/structural_svm_problem.h
View file @
ea2a5184
...
...
@@ -17,10 +17,134 @@ namespace dlib
// ----------------------------------------------------------------------------------------
template
<
typename
matrix_type
,
typename
feature_vector_type_
=
matrix_type
typename
structural_svm_problem
>
class
structural_svm_problem
:
public
oca_problem
<
matrix_type
>
class
cache_element_structural_svm
{
public
:
cache_element_structural_svm
(
)
:
prob
(
0
),
sample_idx
(
0
)
{}
typedef
typename
structural_svm_problem
::
scalar_type
scalar_type
;
typedef
typename
structural_svm_problem
::
matrix_type
matrix_type
;
typedef
typename
structural_svm_problem
::
feature_vector_type
feature_vector_type
;
void
init
(
const
structural_svm_problem
*
prob_
,
const
long
idx
)
/*!
ensures
- This object will be a cache for the idx-th sample in the given
structural_svm_problem.
!*/
{
prob
=
prob_
;
sample_idx
=
idx
;
loss
.
clear
();
psi
.
clear
();
lru_count
.
clear
();
prob
->
get_truth_joint_feature_vector
(
idx
,
true_psi
);
}
void
get_truth_joint_feature_vector_cached
(
feature_vector_type
&
psi
)
const
{
psi
=
true_psi
;
}
void
separation_oracle_cached
(
const
bool
skip_cache
,
const
scalar_type
&
cur_risk_lower_bound
,
const
matrix_type
&
current_solution
,
scalar_type
&
out_loss
,
feature_vector_type
&
out_psi
)
const
{
if
(
!
skip_cache
)
{
scalar_type
best_risk
=
-
std
::
numeric_limits
<
scalar_type
>::
infinity
();
unsigned
long
best_idx
=
0
;
using
sparse_vector
::
dot
;
using
dlib
::
dot
;
const
scalar_type
dot_true_psi
=
dot
(
true_psi
,
current_solution
);
// figure out which element in the cache is the best (i.e. has the biggest risk)
long
max_lru_count
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
loss
.
size
();
++
i
)
{
const
scalar_type
risk
=
loss
[
i
]
+
dot
(
psi
[
i
],
current_solution
)
-
dot_true_psi
;
if
(
risk
>
best_risk
)
{
best_risk
=
risk
;
out_loss
=
loss
[
i
];
best_idx
=
i
;
}
if
(
lru_count
[
i
]
>
max_lru_count
)
max_lru_count
=
lru_count
[
i
];
}
if
(
best_risk
-
cur_risk_lower_bound
>
prob
->
get_epsilon
())
{
out_psi
=
psi
[
best_idx
];
lru_count
[
best_idx
]
=
max_lru_count
+
1
;
return
;
}
}
prob
->
separation_oracle
(
sample_idx
,
current_solution
,
out_loss
,
out_psi
);
// if the cache is full
if
(
loss
.
size
()
>=
prob
->
get_max_cache_size
())
{
// find least recently used cache entry for idx-th sample
const
long
i
=
index_of_min
(
vector_to_matrix
(
lru_count
));
// save our new data in the cache
loss
[
i
]
=
out_loss
;
psi
[
i
]
=
out_psi
;
const
long
max_use
=
max
(
vector_to_matrix
(
lru_count
));
// Make sure this new cache entry has the best lru count since we have used
// it most recently.
lru_count
[
i
]
=
max_use
+
1
;
}
else
{
loss
.
push_back
(
out_loss
);
psi
.
push_back
(
out_psi
);
long
max_use
=
1
;
if
(
lru_count
.
size
()
!=
0
)
max_use
=
max
(
vector_to_matrix
(
lru_count
))
+
1
;
lru_count
.
push_back
(
lru_count
.
size
());
}
}
const
structural_svm_problem
*
prob
;
long
sample_idx
;
mutable
feature_vector_type
true_psi
;
mutable
std
::
vector
<
scalar_type
>
loss
;
mutable
std
::
vector
<
feature_vector_type
>
psi
;
mutable
std
::
vector
<
long
>
lru_count
;
};
// ----------------------------------------------------------------------------------------
template
<
typename
matrix_type_
,
typename
feature_vector_type_
=
matrix_type_
>
class
structural_svm_problem
:
public
oca_problem
<
matrix_type_
>
{
public
:
/*!
...
...
@@ -35,11 +159,11 @@ namespace dlib
- if (cache.size() != 0) then
- cache.size() == get_num_samples()
- true_psis.size() == get_num_samples()
- for all i: cache[i] == the cached results of calls to separation_oracle()
for the i-th sample.
!*/
typedef
matrix_type_
matrix_type
;
typedef
typename
matrix_type
::
type
scalar_type
;
typedef
feature_vector_type_
feature_vector_type
;
...
...
@@ -193,34 +317,28 @@ namespace dlib
feature_vector_type
ftemp
;
const
unsigned
long
num
=
get_num_samples
();
// initialize
psi_true and a few other things if we haven't done so already.
if
(
psi_true
.
size
()
=
=
0
)
// initialize
the cache if necessary.
if
(
cache
.
size
()
==
0
&&
max_cache_size
!
=
0
)
{
// initialize the cache if necessary.
if
(
cache
.
size
()
==
0
&&
max_cache_size
!=
0
)
cache
.
resize
(
get_num_samples
());
cache
.
resize
(
get_num_samples
());
for
(
unsigned
long
i
=
0
;
i
<
cache
.
size
();
++
i
)
cache
[
i
].
init
(
this
,
i
);
}
// initialize psi_true if necessary.
if
(
psi_true
.
size
()
==
0
)
{
psi_true
.
set_size
(
w
.
size
(),
1
);
psi_true
=
0
;
// If the cache is enabled then populate the true_psis array. But
// in either case sum them all up and store the result in psi_true.
if
(
max_cache_size
!=
0
)
for
(
unsigned
long
i
=
0
;
i
<
num
;
++
i
)
{
true_psis
.
resize
(
num
);
for
(
unsigned
long
i
=
0
;
i
<
num
;
++
i
)
{
get_truth_joint_feature_vector
(
i
,
true_psis
[
i
]);
sparse_vector
::
subtract_from
(
psi_true
,
true_psis
[
i
]);
}
}
else
{
for
(
unsigned
long
i
=
0
;
i
<
num
;
++
i
)
{
if
(
cache
.
size
()
==
0
)
get_truth_joint_feature_vector
(
i
,
ftemp
);
sparse_vector
::
subtract_from
(
psi_true
,
ftemp
);
}
else
cache
[
i
].
get_truth_joint_feature_vector_cached
(
ftemp
);
sparse_vector
::
subtract_from
(
psi_true
,
ftemp
);
}
}
...
...
@@ -259,90 +377,29 @@ namespace dlib
feature_vector_type
&
psi
)
const
{
if
(
!
skip_cache
&&
max_cache_size
!=
0
)
if
(
cache
.
size
()
==
0
)
{
scalar_type
best_risk
=
-
std
::
numeric_limits
<
scalar_type
>::
infinity
();
unsigned
long
best_idx
=
0
;
cache_record
&
rec
=
cache
[
idx
];
using
sparse_vector
::
dot
;
using
dlib
::
dot
;
const
scalar_type
dot_true_psi
=
dot
(
true_psis
[
idx
],
current_solution
);
// figure out which element in the cache is the best (i.e. has the biggest risk)
long
max_lru_count
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
rec
.
loss
.
size
();
++
i
)
{
const
scalar_type
risk
=
rec
.
loss
[
i
]
+
dot
(
rec
.
psi
[
i
],
current_solution
)
-
dot_true_psi
;
if
(
risk
>
best_risk
)
{
best_risk
=
risk
;
loss
=
rec
.
loss
[
i
];
best_idx
=
i
;
}
if
(
rec
.
lru_count
[
i
]
>
max_lru_count
)
max_lru_count
=
rec
.
lru_count
[
i
];
}
if
(
best_risk
-
cur_risk_lower_bound
>
eps
)
{
psi
=
rec
.
psi
[
best_idx
];
rec
.
lru_count
[
best_idx
]
=
max_lru_count
+
1
;
return
;
}
separation_oracle
(
idx
,
current_solution
,
loss
,
psi
);
}
separation_oracle
(
idx
,
current_solution
,
loss
,
psi
);
if
(
cache
.
size
()
!=
0
)
else
{
if
(
cache
[
idx
].
loss
.
size
()
<
max_cache_size
)
{
cache
[
idx
].
loss
.
push_back
(
loss
);
cache
[
idx
].
psi
.
push_back
(
psi
);
long
max_use
=
1
;
if
(
cache
[
idx
].
lru_count
.
size
()
!=
0
)
max_use
=
max
(
vector_to_matrix
(
cache
[
idx
].
lru_count
))
+
1
;
cache
[
idx
].
lru_count
.
push_back
(
cache
[
idx
].
lru_count
.
size
());
}
else
{
// find least recently used cache entry for idx-th sample
const
long
i
=
index_of_min
(
vector_to_matrix
(
cache
[
idx
].
lru_count
));
// save our new data in the cache
cache
[
idx
].
loss
[
i
]
=
loss
;
cache
[
idx
].
psi
[
i
]
=
psi
;
const
long
max_use
=
max
(
vector_to_matrix
(
cache
[
idx
].
lru_count
));
// Make sure this new cache entry has the best lru count since we have used
// it most recently.
cache
[
idx
].
lru_count
[
i
]
=
max_use
+
1
;
}
cache
[
idx
].
separation_oracle_cached
(
skip_cache
,
cur_risk_lower_bound
,
current_solution
,
loss
,
psi
);
}
}
private
:
struct
cache_record
{
std
::
vector
<
scalar_type
>
loss
;
std
::
vector
<
feature_vector_type
>
psi
;
std
::
vector
<
long
>
lru_count
;
};
mutable
scalar_type
cur_risk_lower_bound
;
mutable
matrix_type
psi_true
;
scalar_type
eps
;
mutable
bool
verbose
;
mutable
std
::
vector
<
feature_vector_type
>
true_psis
;
mutable
std
::
vector
<
cache_
record
>
cache
;
mutable
std
::
vector
<
cache_
element_structural_svm
<
structural_svm_problem
>
>
cache
;
mutable
bool
skip_cache
;
unsigned
long
max_cache_size
;
...
...
dlib/svm/structural_svm_problem_abstract.h
View file @
ea2a5184
...
...
@@ -13,15 +13,15 @@ namespace dlib
// ----------------------------------------------------------------------------------------
template
<
typename
matrix_type
,
typename
feature_vector_type_
=
matrix_type
typename
matrix_type
_
,
typename
feature_vector_type_
=
matrix_type
_
>
class
structural_svm_problem
:
public
oca_problem
<
matrix_type
>
class
structural_svm_problem
:
public
oca_problem
<
matrix_type
_
>
{
public
:
/*!
REQUIREMENTS ON matrix_type
- matrix_type == a dlib::matrix capable of storing column vectors
REQUIREMENTS ON matrix_type
_
- matrix_type
_
== a dlib::matrix capable of storing column vectors
REQUIREMENTS ON feature_vector_type_
- feature_vector_type_ == a dlib::matrix capable of storing column vectors
...
...
@@ -81,6 +81,7 @@ namespace dlib
paper.
!*/
typedef
matrix_type_
matrix_type
;
typedef
typename
matrix_type
::
type
scalar_type
;
typedef
feature_vector_type_
feature_vector_type
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment