Commit f2371195 authored by Davis King's avatar Davis King

Added newman_cluster(), chinese_whispers(), and modularity() routines.

parent d598fcf2
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_CLuSTERING_
#define DLIB_CLuSTERING_
#include "clustering/modularity_clustering.h"
#include "clustering/chinese_whispers.h"
#include "svm/kkmeans.h"
#endif // DLIB_CLuSTERING_
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_CHINESE_WHISPErS_H__
#define DLIB_CHINESE_WHISPErS_H__
#include "chinese_whispers_abstract.h"
#include <vector>
#include "../rand.h"
#include "../manifold_regularization/graph_creation.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
unsigned long chinese_whispers (
const std::vector<ordered_sample_pair>& edges,
std::vector<unsigned long>& labels,
const unsigned long num_iterations,
dlib::rand& rnd
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_ordered_by_index(edges),
"\t unsigned long chinese_whispers()"
<< "\n\t Invalid inputs were given to this function"
);
std::vector<std::pair<unsigned long, unsigned long> > neighbors;
find_neighbor_ranges(edges, neighbors);
// Initialize the labels, each node gets a different label.
labels.resize(neighbors.size());
for (unsigned long i = 0; i < labels.size(); ++i)
labels[i] = i;
for (unsigned long iter = 0; iter < neighbors.size()*num_iterations; ++iter)
{
// Pick a random node.
const unsigned long idx = rnd.get_random_64bit_number()%neighbors.size();
// Count how many times each label happens amongst our neighbors.
std::map<unsigned long, double> labels_to_counts;
const unsigned long end = neighbors[idx].second;
for (unsigned long i = neighbors[idx].first; i != end; ++i)
{
labels_to_counts[labels[edges[i].index2()]] += edges[i].distance();
}
// find the most common label
std::map<unsigned long, double>::iterator i;
double best_score = -std::numeric_limits<double>::infinity();
unsigned long best_label = labels[idx];
for (i = labels_to_counts.begin(); i != labels_to_counts.end(); ++i)
{
if (i->second > best_score)
{
best_score = i->second;
best_label = i->first;
}
}
labels[idx] = best_label;
}
// Remap the labels into a contiguous range. First we find the
// mapping.
std::map<unsigned long,unsigned long> label_remap;
for (unsigned long i = 0; i < labels.size(); ++i)
{
const unsigned long next_id = label_remap.size();
if (label_remap.count(labels[i]) == 0)
label_remap[labels[i]] = next_id;
}
// now apply the mapping to all the labels.
for (unsigned long i = 0; i < labels.size(); ++i)
{
labels[i] = label_remap[labels[i]];
}
return label_remap.size();
}
// ----------------------------------------------------------------------------------------
unsigned long chinese_whispers (
const std::vector<sample_pair>& edges,
std::vector<unsigned long>& labels,
const unsigned long num_iterations,
dlib::rand& rnd
)
{
std::vector<ordered_sample_pair> oedges;
convert_unordered_to_ordered(edges, oedges);
std::sort(oedges.begin(), oedges.end(), &order_by_index<ordered_sample_pair>);
return chinese_whispers(oedges, labels, num_iterations, rnd);
}
// ----------------------------------------------------------------------------------------
unsigned long chinese_whispers (
const std::vector<sample_pair>& edges,
std::vector<unsigned long>& labels,
const unsigned long num_iterations = 100
)
{
dlib::rand rnd;
return chinese_whispers(edges, labels, num_iterations, rnd);
}
// ----------------------------------------------------------------------------------------
unsigned long chinese_whispers (
const std::vector<ordered_sample_pair>& edges,
std::vector<unsigned long>& labels,
const unsigned long num_iterations = 100
)
{
dlib::rand rnd;
return chinese_whispers(edges, labels, num_iterations, rnd);
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_CHINESE_WHISPErS_H__
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_CHINESE_WHISPErS_ABSTRACT_H__
#ifdef DLIB_CHINESE_WHISPErS_ABSTRACT_H__
#include <vector>
#include "../rand.h"
#include "../manifold_regularization/ordered_sample_pair_abstract.h"
#include "../manifold_regularization/sample_pair_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
unsigned long chinese_whispers (
const std::vector<ordered_sample_pair>& edges,
std::vector<unsigned long>& labels,
const unsigned long num_iterations,
dlib::rand& rnd
);
/*!
requires
- is_ordered_by_index(edges) == true
ensures
- This function implements the graph clustering algorithm described in the
paper: Chinese Whispers - an Efficient Graph Clustering Algorithm and its
Application to Natural Language Processing Problems by Chris Biemann.
- Interprets edges as a directed graph. That is, it contains the edges on the
said graph and the ordered_sample_pair::distance() values define the edge
weights (larger values indicating a stronger edge connection between the
nodes).
- returns the number of clusters found.
- #labels.size() == max_index_plus_one(edges)
- for all valid i:
- #labels[i] == the cluster ID of the node with index i in the graph.
- 0 <= #labels[i] < the number of clusters found
(i.e. cluster IDs are assigned contiguously and start at 0)
- Duplicate edges are interpreted as if there had been just one edge with a
distance value equal to the sum of all the duplicate edge's distance values.
- The algorithm performs exactly num_iterations passes over the graph before
terminating.
!*/
// ----------------------------------------------------------------------------------------
unsigned long chinese_whispers (
const std::vector<sample_pair>& edges,
std::vector<unsigned long>& labels,
const unsigned long num_iterations,
dlib::rand& rnd
);
/*!
ensures
- This function is identical to the above chinese_whispers() routine except
that it operates on a vector of sample_pair objects instead of
ordered_sample_pairs. Therefore, this is simply a convenience routine. In
particular, it is implemented by transforming the given edges into
ordered_sample_pairs and then calling the chinese_whispers() routine defined
above.
!*/
// ----------------------------------------------------------------------------------------
unsigned long chinese_whispers (
const std::vector<ordered_sample_pair>& edges,
std::vector<unsigned long>& labels,
const unsigned long num_iterations = 100
);
/*!
requires
- is_ordered_by_index(edges) == true
ensures
- performs: return chinese_whispers(edges, labels, num_iterations, rnd)
where rnd is a default initialized dlib::rand object.
!*/
// ----------------------------------------------------------------------------------------
unsigned long chinese_whispers (
const std::vector<sample_pair>& edges,
std::vector<unsigned long>& labels,
const unsigned long num_iterations = 100
);
/*!
ensures
- performs: return chinese_whispers(edges, labels, num_iterations, rnd)
where rnd is a default initialized dlib::rand object.
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_CHINESE_WHISPErS_ABSTRACT_H__
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_MODULARITY_ClUSTERING__H__
#define DLIB_MODULARITY_ClUSTERING__H__
#include "modularity_clustering_abstract.h"
#include "../sparse_vector.h"
#include "../manifold_regularization/graph_creation.h"
#include "../matrix.h"
#include "../rand.h"
namespace dlib
{
// -----------------------------------------------------------------------------------------
namespace impl
{
double newman_cluster_split (
dlib::rand& rnd,
const std::vector<ordered_sample_pair>& edges,
const matrix<double,0,1>& node_degrees, // k from the Newman paper
const matrix<double,0,1>& Bdiag, // diag(B) from the Newman paper
const double& edge_sum, // m from the Newman paper
matrix<double,0,1>& labels,
const double eps,
const unsigned long max_iterations
)
/*!
requires
- node_degrees.size() == max_index_plus_one(edges)
- Bdiag.size() == max_index_plus_one(edges)
- edges must be sorted according to order_by_index()
ensures
- This routine splits a graph into two subgraphs using the Newman
clustering method.
- returns the modularity obtained when the graph is split according
to the contents of #labels.
- #labels.size() == node_degrees.size()
- for all valid i: #labels(i) == -1 or +1
- if (this function returns 0) then
- all the labels are equal, i.e. the graph is not split.
!*/
{
// Scale epsilon so that it is relative to the expected value of an element of a
// unit vector of length node_degrees.size().
const double power_iter_eps = eps * std::sqrt(1.0/node_degrees.size());
// Make a random unit vector and put in labels.
labels.set_size(node_degrees.size());
for (long i = 0; i < labels.size(); ++i)
labels(i) = rnd.get_random_gaussian();
labels /= length(labels);
matrix<double,0,1> Bv, Bv_unit;
// Do the power iteration for a while.
double eig = -1;
double offset = 0;
while (eig < 0)
{
// any number larger than power_iter_eps
double iteration_change = power_iter_eps*2+1;
for (unsigned long i = 0; i < max_iterations && iteration_change > power_iter_eps; ++i)
{
sparse_matrix_vector_multiply(edges, labels, Bv);
Bv -= dot(node_degrees, labels)/(2*edge_sum) * node_degrees;
if (offset != 0)
{
Bv -= offset*labels;
}
const double len = length(Bv);
if (len != 0)
{
Bv_unit = Bv/len;
iteration_change = max(abs(labels-Bv_unit));
labels.swap(Bv_unit);
}
else
{
// Had a bad time, pick another random vector and try it with the
// power iteration.
for (long i = 0; i < labels.size(); ++i)
labels(i) = rnd.get_random_gaussian();
}
}
eig = dot(Bv,labels);
// we will repeat this loop if the largest eigenvalue is negative
offset = eig;
}
for (long i = 0; i < labels.size(); ++i)
{
if (labels(i) > 0)
labels(i) = 1;
else
labels(i) = -1;
}
// compute B*labels, store result in Bv.
sparse_matrix_vector_multiply(edges, labels, Bv);
Bv -= dot(node_degrees, labels)/(2*edge_sum) * node_degrees;
// Do some label refinement. In this step we swap labels if it
// improves the modularity score.
bool flipped_label = true;
while(flipped_label)
{
flipped_label = false;
unsigned long idx = 0;
for (long i = 0; i < labels.size(); ++i)
{
const double val = -2*labels(i);
const double increase = 4*Bdiag(i) + 2*val*Bv(i);
// if there is an increase in modularity for swapping this label
if (increase > 0)
{
labels(i) *= -1;
while (idx < edges.size() && edges[idx].index1() == (unsigned long)i)
{
const long j = edges[idx].index2();
Bv(j) += val*edges[idx].distance();
++idx;
}
Bv -= (val*node_degrees(i)/(2*edge_sum))*node_degrees;
flipped_label = true;
}
else
{
while (idx < edges.size() && edges[idx].index1() == (unsigned long)i)
{
++idx;
}
}
}
}
const double modularity = dot(Bv, labels)/(4*edge_sum);
return modularity;
}
// -------------------------------------------------------------------------------------
unsigned long newman_cluster_helper (
dlib::rand& rnd,
const std::vector<ordered_sample_pair>& edges,
const matrix<double,0,1>& node_degrees, // k from the Newman paper
const matrix<double,0,1>& Bdiag, // diag(B) from the Newman paper
const double& edge_sum, // m from the Newman paper
std::vector<unsigned long>& labels,
double modularity_threshold,
const double eps,
const unsigned long max_iterations
)
/*!
ensures
- returns the number of clusters the data was split into
!*/
{
matrix<double,0,1> l;
const double modularity = newman_cluster_split(rnd,edges,node_degrees,Bdiag,edge_sum,l,eps,max_iterations);
// We need to collapse the node index values down to contiguous values. So
// we use the following two vectors to contain the mappings from input index
// values to their corresponding index values in each split.
std::vector<unsigned long> left_idx_map(node_degrees.size());
std::vector<unsigned long> right_idx_map(node_degrees.size());
// figure out how many nodes went into each side of the split.
unsigned long num_left_split = 0;
unsigned long num_right_split = 0;
for (long i = 0; i < l.size(); ++i)
{
if (l(i) > 0)
{
left_idx_map[i] = num_left_split;
++num_left_split;
}
else
{
right_idx_map[i] = num_right_split;
++num_right_split;
}
}
// do a recursive split if it will improve the modularity.
if (modularity > modularity_threshold && num_left_split > 0 && num_right_split > 0)
{
// split the node_degrees and Bdiag matrices into left and right split parts
matrix<double,0,1> left_node_degrees(num_left_split);
matrix<double,0,1> right_node_degrees(num_right_split);
matrix<double,0,1> left_Bdiag(num_left_split);
matrix<double,0,1> right_Bdiag(num_right_split);
for (long i = 0; i < l.size(); ++i)
{
if (l(i) > 0)
{
left_node_degrees(left_idx_map[i]) = node_degrees(i);
left_Bdiag(left_idx_map[i]) = Bdiag(i);
}
else
{
right_node_degrees(right_idx_map[i]) = node_degrees(i);
right_Bdiag(right_idx_map[i]) = Bdiag(i);
}
}
// put the edges from one side of the split into split_edges
std::vector<ordered_sample_pair> split_edges;
modularity_threshold = 0;
for (unsigned long k = 0; k < edges.size(); ++k)
{
const unsigned long i = edges[k].index1();
const unsigned long j = edges[k].index2();
const double d = edges[k].distance();
if (l(i) > 0 && l(j) > 0)
{
split_edges.push_back(ordered_sample_pair(left_idx_map[i], left_idx_map[j], d));
modularity_threshold += d;
}
}
modularity_threshold -= sum(left_node_degrees*sum(left_node_degrees))/(2*edge_sum);
modularity_threshold /= 4*edge_sum;
unsigned long num_left_clusters;
std::vector<unsigned long> left_labels;
num_left_clusters = newman_cluster_helper(rnd,split_edges,left_node_degrees,left_Bdiag,
edge_sum,left_labels,modularity_threshold,
eps, max_iterations);
// now load the other side into split_edges and cluster it as well
split_edges.clear();
modularity_threshold = 0;
for (unsigned long k = 0; k < edges.size(); ++k)
{
const unsigned long i = edges[k].index1();
const unsigned long j = edges[k].index2();
const double d = edges[k].distance();
if (l(i) < 0 && l(j) < 0)
{
split_edges.push_back(ordered_sample_pair(right_idx_map[i], right_idx_map[j], d));
modularity_threshold += d;
}
}
modularity_threshold -= sum(right_node_degrees*sum(right_node_degrees))/(2*edge_sum);
modularity_threshold /= 4*edge_sum;
unsigned long num_right_clusters;
std::vector<unsigned long> right_labels;
num_right_clusters = newman_cluster_helper(rnd,split_edges,right_node_degrees,right_Bdiag,
edge_sum,right_labels,modularity_threshold,
eps, max_iterations);
// Now merge the labels from the two splits.
labels.resize(node_degrees.size());
for (unsigned long i = 0; i < labels.size(); ++i)
{
// if this node was in the left split
if (l(i) > 0)
{
labels[i] = left_labels[left_idx_map[i]];
}
else // if this node was in the right split
{
labels[i] = right_labels[right_idx_map[i]] + num_left_clusters;
}
}
return num_left_clusters + num_right_clusters;
}
else
{
labels.assign(node_degrees.size(),0);
return 1;
}
}
}
// ----------------------------------------------------------------------------------------
unsigned long newman_cluster (
const std::vector<ordered_sample_pair>& edges,
std::vector<unsigned long>& labels,
const double eps = 1e-4,
const unsigned long max_iterations = 2000
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_ordered_by_index(edges),
"\t unsigned long newman_cluster()"
<< "\n\t Invalid inputs were given to this function"
);
const unsigned long num_nodes = max_index_plus_one(edges);
// compute the node_degrees vector, edge_sum value, and diag(B).
matrix<double,0,1> node_degrees(num_nodes);
matrix<double,0,1> Bdiag(num_nodes);
Bdiag = 0;
double edge_sum = 0;
node_degrees = 0;
for (unsigned long i = 0; i < edges.size(); ++i)
{
node_degrees(edges[i].index1()) += edges[i].distance();
edge_sum += edges[i].distance();
if (edges[i].index1() == edges[i].index2())
Bdiag(edges[i].index1()) += edges[i].distance();
}
edge_sum /= 2;
Bdiag -= squared(node_degrees)/(2*edge_sum);
dlib::rand rnd;
return impl::newman_cluster_helper(rnd,edges,node_degrees,Bdiag,edge_sum,labels,0,eps,max_iterations);
}
// ----------------------------------------------------------------------------------------
unsigned long newman_cluster (
const std::vector<sample_pair>& edges,
std::vector<unsigned long>& labels,
const double eps = 1e-4,
const unsigned long max_iterations = 2000
)
{
std::vector<ordered_sample_pair> oedges;
convert_unordered_to_ordered(edges, oedges);
std::sort(oedges.begin(), oedges.end(), &order_by_index<ordered_sample_pair>);
return newman_cluster(oedges, labels, eps, max_iterations);
}
// ----------------------------------------------------------------------------------------
namespace impl
{
std::vector<unsigned long> remap_labels (
const std::vector<unsigned long>& labels,
unsigned long& num_labels
)
/*!
ensures
- This function takes labels and produces a mapping which maps elements of
labels into the most compact range in [0, max] as possible. In particular,
there won't be any unused integers in the mapped range.
- #num_labels == the number of distinct values in labels.
- returns a vector V such that:
- V.size() == labels.size()
- max(vector_to_matrix(V))+1 == num_labels.
- for all valid i,j:
- if (labels[i] == labels[j]) then
- V[i] == V[j]
- else
- V[i] != V[j]
!*/
{
std::map<unsigned long, unsigned long> temp;
for (unsigned long i = 0; i < labels.size(); ++i)
{
if (temp.count(labels[i]) == 0)
{
const unsigned long next = temp.size();
temp[labels[i]] = next;
}
}
num_labels = temp.size();
std::vector<unsigned long> result(labels.size());
for (unsigned long i = 0; i < labels.size(); ++i)
{
result[i] = temp[labels[i]];
}
return result;
}
}
// ----------------------------------------------------------------------------------------
double modularity (
const std::vector<sample_pair>& edges,
const std::vector<unsigned long>& labels
)
{
const unsigned long num_nodes = max_index_plus_one(edges);
// make sure requires clause is not broken
DLIB_ASSERT(labels.size() == num_nodes,
"\t double modularity()"
<< "\n\t Invalid inputs were given to this function"
);
unsigned long num_labels;
const std::vector<unsigned long>& labels_ = dlib::impl::remap_labels(labels,num_labels);
std::vector<double> cluster_sums(num_labels,0);
std::vector<double> k(num_nodes,0);
double Q = 0;
double m = 0;
for (unsigned long i = 0; i < edges.size(); ++i)
{
const unsigned long n1 = edges[i].index1();
const unsigned long n2 = edges[i].index2();
k[n1] += edges[i].distance();
if (n1 != n2)
k[n2] += edges[i].distance();
if (n1 != n2)
m += edges[i].distance();
else
m += edges[i].distance()/2;
if (labels_[n1] == labels_[n2])
{
if (n1 != n2)
Q += 2*edges[i].distance();
else
Q += edges[i].distance();
}
}
if (m == 0)
return 0;
for (unsigned long i = 0; i < labels_.size(); ++i)
{
cluster_sums[labels_[i]] += k[i];
}
for (unsigned long i = 0; i < labels_.size(); ++i)
{
Q -= k[i]*cluster_sums[labels_[i]]/(2*m);
}
return 1.0/(2*m)*Q;
}
// ----------------------------------------------------------------------------------------
double modularity (
const std::vector<ordered_sample_pair>& edges,
const std::vector<unsigned long>& labels
)
{
const unsigned long num_nodes = max_index_plus_one(edges);
// make sure requires clause is not broken
DLIB_ASSERT(labels.size() == num_nodes,
"\t double modularity()"
<< "\n\t Invalid inputs were given to this function"
);
unsigned long num_labels;
const std::vector<unsigned long>& labels_ = dlib::impl::remap_labels(labels,num_labels);
std::vector<double> cluster_sums(num_labels,0);
std::vector<double> k(num_nodes,0);
double Q = 0;
double m = 0;
for (unsigned long i = 0; i < edges.size(); ++i)
{
const unsigned long n1 = edges[i].index1();
const unsigned long n2 = edges[i].index2();
k[n1] += edges[i].distance();
m += edges[i].distance();
if (labels_[n1] == labels_[n2])
{
Q += edges[i].distance();
}
}
if (m == 0)
return 0;
for (unsigned long i = 0; i < labels_.size(); ++i)
{
cluster_sums[labels_[i]] += k[i];
}
for (unsigned long i = 0; i < labels_.size(); ++i)
{
Q -= k[i]*cluster_sums[labels_[i]]/m;
}
return 1.0/m*Q;
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MODULARITY_ClUSTERING__H__
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_MODULARITY_ClUSTERING_ABSTRACT_H__
#ifdef DLIB_MODULARITY_ClUSTERING_ABSTRACT_H__
#include <vector>
#include "../manifold_regularization/ordered_sample_pair_abstract.h"
#include "../manifold_regularization/sample_pair_abstract.h"
namespace dlib
{
// -----------------------------------------------------------------------------------------
double modularity (
const std::vector<sample_pair>& edges,
const std::vector<unsigned long>& labels
);
/*!
requires
- labels.size() == max_index_plus_one(edges)
ensures
- Interprets edges as an undirected graph. That is, it contains the edges on
the said graph and the sample_pair::distance() values define the edge weights
(larger values indicating a stronger edge connection between the nodes).
- This function returns the modularity value obtained when the given input
graph is broken into subgraphs according to the contents of labels. In
particular, we say that two nodes with indices i and j are in the same
subgraph or community if and only if labels[i] == labels[j].
- Duplicate edges are interpreted as if there had been just one edge with a
distance value equal to the sum of all the duplicate edge's distance values.
- See the paper Modularity and community structure in networks by M. E. J. Newman
for a detailed definition.
!*/
// ----------------------------------------------------------------------------------------
double modularity (
const std::vector<ordered_sample_pair>& edges,
const std::vector<unsigned long>& labels
);
/*!
requires
- labels.size() == max_index_plus_one(edges)
ensures
- Interprets edges as a directed graph. That is, it contains the edges on the
said graph and the ordered_sample_pair::distance() values define the edge
weights (larger values indicating a stronger edge connection between the
nodes). Note that, generally, modularity is only really defined for
undirected graphs. Therefore, the "directed graph" given to this function
should have symmetric edges between all nodes. The reason this function is
provided at all is because sometimes a vector of ordered_sample_pair objects
is a useful representation of an undirected graph.
- This function returns the modularity value obtained when the given input
graph is broken into subgraphs according to the contents of labels. In
particular, we say that two nodes with indices i and j are in the same
subgraph or community if and only if labels[i] == labels[j].
- Duplicate edges are interpreted as if there had been just one edge with a
distance value equal to the sum of all the duplicate edge's distance values.
- See the paper Modularity and community structure in networks by M. E. J. Newman
for a detailed definition.
!*/
// ----------------------------------------------------------------------------------------
unsigned long newman_cluster (
const std::vector<ordered_sample_pair>& edges,
std::vector<unsigned long>& labels,
const double eps = 1e-4,
const unsigned long max_iterations = 2000
);
/*!
requires
- is_ordered_by_index(edges) == true
ensures
- This function performs the clustering algorithm described in the paper
Modularity and community structure in networks by M. E. J. Newman.
- This function interprets edges as a graph and attempts to find the labeling
that maximizes modularity(edges, #labels).
- returns the number of clusters found.
- #labels.size() == max_index_plus_one(edges)
- for all valid i:
- #labels[i] == the cluster ID of the node with index i in the graph.
- 0 <= #labels[i] < the number of clusters found
(i.e. cluster IDs are assigned contiguously and start at 0)
- The main computation of the algorithm is involved in finding an eigenvector
of a certain matrix. To do this, we use the power iteration. In particular,
each time we try to find an eigenvector we will let the power iteration loop
at most max_iterations times or until it reaches an accuracy of eps.
Whichever comes first.
!*/
// ----------------------------------------------------------------------------------------
unsigned long newman_cluster (
const std::vector<sample_pair>& edges,
std::vector<unsigned long>& labels,
const double eps = 1e-4,
const unsigned long max_iterations = 2000
);
/*!
ensures
- This function is identical to the above newman_cluster() routine except that
it operates on a vector of sample_pair objects instead of
ordered_sample_pairs. Therefore, this is simply a convenience routine. In
particular, it is implemented by transforming the given edges into
ordered_sample_pairs and then calling the newman_cluster() routine defined
above.
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MODULARITY_ClUSTERING_ABSTRACT_H__
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment