// Copyright (C) 2013 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #include <boost/python.hpp> #include <boost/shared_ptr.hpp> #include <dlib/matrix.h> #include "serialize_pickle.h" #include <dlib/svm_threaded.h> #include "pyassert.h" #include <boost/python/suite/indexing/vector_indexing_suite.hpp> #include <boost/python/args.hpp> using namespace dlib; using namespace std; using namespace boost::python; typedef matrix<double,0,1> dense_vect; typedef std::vector<std::pair<unsigned long,double> > sparse_vect; typedef std::vector<std::pair<unsigned long, unsigned long> > ranges; // ---------------------------------------------------------------------------------------- template <typename samp_type, bool BIO, bool high_order, bool nonnegative> class segmenter_feature_extractor { public: typedef std::vector<samp_type> sequence_type; const static bool use_BIO_model = BIO; const static bool use_high_order_features = high_order; const static bool allow_negative_weights = nonnegative; unsigned long _num_features; unsigned long _window_size; segmenter_feature_extractor( ) : _num_features(1), _window_size(1) {} segmenter_feature_extractor( unsigned long _num_features_, unsigned long _window_size_ ) : _num_features(_num_features_), _window_size(_window_size_) {} unsigned long num_features( ) const { return _num_features; } unsigned long window_size( ) const {return _window_size; } template <typename feature_setter> void get_features ( feature_setter& set_feature, const std::vector<dense_vect>& x, unsigned long position ) const { for (long i = 0; i < x[position].size(); ++i) { set_feature(i, x[position](i)); } } template <typename feature_setter> void get_features ( feature_setter& set_feature, const std::vector<sparse_vect>& x, unsigned long position ) const { for (unsigned long i = 0; i < x[position].size(); ++i) { set_feature(x[position][i].first, x[position][i].second); } } friend void serialize(const segmenter_feature_extractor& item, std::ostream& out) { dlib::serialize(item._num_features, out); dlib::serialize(item._window_size, out); } friend void deserialize(segmenter_feature_extractor& item, std::istream& in) { dlib::deserialize(item._num_features, in); dlib::deserialize(item._window_size, in); } }; // ---------------------------------------------------------------------------------------- struct segmenter_type { /*! WHAT THIS OBJECT REPRESENTS This the object that python will use directly to represent a sequence_segmenter. All it does is contain all the possible template instantiations of a sequence_segmenter and invoke the right one depending on the mode variable. !*/ segmenter_type() : mode(-1) { } ranges segment_sequence_dense ( const std::vector<dense_vect>& x ) const { switch (mode) { case 0: return segmenter0(x); case 1: return segmenter1(x); case 2: return segmenter2(x); case 3: return segmenter3(x); case 4: return segmenter4(x); case 5: return segmenter5(x); case 6: return segmenter6(x); case 7: return segmenter7(x); default: throw dlib::error("Invalid mode"); } } ranges segment_sequence_sparse ( const std::vector<sparse_vect>& x ) const { switch (mode) { case 8: return segmenter8(x); case 9: return segmenter9(x); case 10: return segmenter10(x); case 11: return segmenter11(x); case 12: return segmenter12(x); case 13: return segmenter13(x); case 14: return segmenter14(x); case 15: return segmenter15(x); default: throw dlib::error("Invalid mode"); } } const matrix<double,0,1> get_weights() { switch(mode) { case 0: return segmenter0.get_weights(); case 1: return segmenter1.get_weights(); case 2: return segmenter2.get_weights(); case 3: return segmenter3.get_weights(); case 4: return segmenter4.get_weights(); case 5: return segmenter5.get_weights(); case 6: return segmenter6.get_weights(); case 7: return segmenter7.get_weights(); case 8: return segmenter8.get_weights(); case 9: return segmenter9.get_weights(); case 10: return segmenter10.get_weights(); case 11: return segmenter11.get_weights(); case 12: return segmenter12.get_weights(); case 13: return segmenter13.get_weights(); case 14: return segmenter14.get_weights(); case 15: return segmenter15.get_weights(); default: throw dlib::error("Invalid mode"); } } friend void serialize (const segmenter_type& item, std::ostream& out) { serialize(item.mode, out); switch(item.mode) { case 0: serialize(item.segmenter0, out); break; case 1: serialize(item.segmenter1, out); break; case 2: serialize(item.segmenter2, out); break; case 3: serialize(item.segmenter3, out); break; case 4: serialize(item.segmenter4, out); break; case 5: serialize(item.segmenter5, out); break; case 6: serialize(item.segmenter6, out); break; case 7: serialize(item.segmenter7, out); break; case 8: serialize(item.segmenter8, out); break; case 9: serialize(item.segmenter9, out); break; case 10: serialize(item.segmenter10, out); break; case 11: serialize(item.segmenter11, out); break; case 12: serialize(item.segmenter12, out); break; case 13: serialize(item.segmenter13, out); break; case 14: serialize(item.segmenter14, out); break; case 15: serialize(item.segmenter15, out); break; default: throw dlib::error("Invalid mode"); } } friend void deserialize (segmenter_type& item, std::istream& in) { deserialize(item.mode, in); switch(item.mode) { case 0: deserialize(item.segmenter0, in); break; case 1: deserialize(item.segmenter1, in); break; case 2: deserialize(item.segmenter2, in); break; case 3: deserialize(item.segmenter3, in); break; case 4: deserialize(item.segmenter4, in); break; case 5: deserialize(item.segmenter5, in); break; case 6: deserialize(item.segmenter6, in); break; case 7: deserialize(item.segmenter7, in); break; case 8: deserialize(item.segmenter8, in); break; case 9: deserialize(item.segmenter9, in); break; case 10: deserialize(item.segmenter10, in); break; case 11: deserialize(item.segmenter11, in); break; case 12: deserialize(item.segmenter12, in); break; case 13: deserialize(item.segmenter13, in); break; case 14: deserialize(item.segmenter14, in); break; case 15: deserialize(item.segmenter15, in); break; default: throw dlib::error("Invalid mode"); } } int mode; typedef segmenter_feature_extractor<dense_vect, false,false,false> fe0; typedef segmenter_feature_extractor<dense_vect, false,false,true> fe1; typedef segmenter_feature_extractor<dense_vect, false,true, false> fe2; typedef segmenter_feature_extractor<dense_vect, false,true, true> fe3; typedef segmenter_feature_extractor<dense_vect, true, false,false> fe4; typedef segmenter_feature_extractor<dense_vect, true, false,true> fe5; typedef segmenter_feature_extractor<dense_vect, true, true, false> fe6; typedef segmenter_feature_extractor<dense_vect, true, true, true> fe7; sequence_segmenter<fe0> segmenter0; sequence_segmenter<fe1> segmenter1; sequence_segmenter<fe2> segmenter2; sequence_segmenter<fe3> segmenter3; sequence_segmenter<fe4> segmenter4; sequence_segmenter<fe5> segmenter5; sequence_segmenter<fe6> segmenter6; sequence_segmenter<fe7> segmenter7; typedef segmenter_feature_extractor<sparse_vect, false,false,false> fe8; typedef segmenter_feature_extractor<sparse_vect, false,false,true> fe9; typedef segmenter_feature_extractor<sparse_vect, false,true, false> fe10; typedef segmenter_feature_extractor<sparse_vect, false,true, true> fe11; typedef segmenter_feature_extractor<sparse_vect, true, false,false> fe12; typedef segmenter_feature_extractor<sparse_vect, true, false,true> fe13; typedef segmenter_feature_extractor<sparse_vect, true, true, false> fe14; typedef segmenter_feature_extractor<sparse_vect, true, true, true> fe15; sequence_segmenter<fe8> segmenter8; sequence_segmenter<fe9> segmenter9; sequence_segmenter<fe10> segmenter10; sequence_segmenter<fe11> segmenter11; sequence_segmenter<fe12> segmenter12; sequence_segmenter<fe13> segmenter13; sequence_segmenter<fe14> segmenter14; sequence_segmenter<fe15> segmenter15; }; // ---------------------------------------------------------------------------------------- struct segmenter_params { segmenter_params() { use_BIO_model = true; use_high_order_features = true; allow_negative_weights = true; window_size = 5; num_threads = 4; epsilon = 0.1; max_cache_size = 40; be_verbose = false; C = 100; } bool use_BIO_model; bool use_high_order_features; bool allow_negative_weights; unsigned long window_size; unsigned long num_threads; double epsilon; unsigned long max_cache_size; bool be_verbose; double C; }; string segmenter_params__str__(const segmenter_params& p) { ostringstream sout; if (p.use_BIO_model) sout << "BIO,"; else sout << "BILOU,"; if (p.use_high_order_features) sout << "highFeats,"; else sout << "lowFeats,"; if (p.allow_negative_weights) sout << "signed,"; else sout << "non-negative,"; sout << "win="<<p.window_size << ","; sout << "threads="<<p.num_threads << ","; sout << "eps="<<p.epsilon << ","; sout << "cache="<<p.max_cache_size << ","; if (p.be_verbose) sout << "verbose,"; else sout << "non-verbose,"; sout << "C="<<p.C; return trim(sout.str()); } string segmenter_params__repr__(const segmenter_params& p) { ostringstream sout; sout << "<"; sout << segmenter_params__str__(p); sout << ">"; return sout.str(); } void serialize ( const segmenter_params& item, std::ostream& out) { serialize(item.use_BIO_model, out); serialize(item.use_high_order_features, out); serialize(item.allow_negative_weights, out); serialize(item.window_size, out); serialize(item.num_threads, out); serialize(item.epsilon, out); serialize(item.max_cache_size, out); serialize(item.be_verbose, out); serialize(item.C, out); } void deserialize (segmenter_params& item, std::istream& in) { deserialize(item.use_BIO_model, in); deserialize(item.use_high_order_features, in); deserialize(item.allow_negative_weights, in); deserialize(item.window_size, in); deserialize(item.num_threads, in); deserialize(item.epsilon, in); deserialize(item.max_cache_size, in); deserialize(item.be_verbose, in); deserialize(item.C, in); } // ---------------------------------------------------------------------------------------- template <typename T> void configure_trainer ( const std::vector<std::vector<dense_vect> >& samples, structural_sequence_segmentation_trainer<T>& trainer, const segmenter_params& params ) { pyassert(samples.size() != 0, "Invalid arguments. You must give some training sequences."); pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences."); pyassert(params.window_size != 0, "Invalid window_size parameter, it must be > 0."); pyassert(params.epsilon > 0, "Invalid epsilon parameter, it must be > 0."); pyassert(params.C > 0, "Invalid C parameter, it must be > 0."); const long dims = samples[0][0].size(); trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size)); trainer.set_num_threads(params.num_threads); trainer.set_epsilon(params.epsilon); trainer.set_max_cache_size(params.max_cache_size); trainer.set_c(params.C); if (params.be_verbose) trainer.be_verbose(); } // ---------------------------------------------------------------------------------------- template <typename T> void configure_trainer ( const std::vector<std::vector<sparse_vect> >& samples, structural_sequence_segmentation_trainer<T>& trainer, const segmenter_params& params ) { pyassert(samples.size() != 0, "Invalid arguments. You must give some training sequences."); pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences."); unsigned long dims = 0; for (unsigned long i = 0; i < samples.size(); ++i) { dims = std::max(dims, max_index_plus_one(samples[i])); } trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size)); trainer.set_num_threads(params.num_threads); trainer.set_epsilon(params.epsilon); trainer.set_max_cache_size(params.max_cache_size); trainer.set_c(params.C); if (params.be_verbose) trainer.be_verbose(); } // ---------------------------------------------------------------------------------------- segmenter_type train_dense ( const std::vector<std::vector<dense_vect> >& samples, const std::vector<ranges>& segments, segmenter_params params ) { pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs"); int mode = 0; if (params.use_BIO_model) mode = mode*2 + 1; else mode = mode*2; if (params.use_high_order_features) mode = mode*2 + 1; else mode = mode*2; if (params.allow_negative_weights) mode = mode*2 + 1; else mode = mode*2; segmenter_type res; res.mode = mode; switch(mode) { case 0: { structural_sequence_segmentation_trainer<segmenter_type::fe0> trainer; configure_trainer(samples, trainer, params); res.segmenter0 = trainer.train(samples, segments); } break; case 1: { structural_sequence_segmentation_trainer<segmenter_type::fe1> trainer; configure_trainer(samples, trainer, params); res.segmenter1 = trainer.train(samples, segments); } break; case 2: { structural_sequence_segmentation_trainer<segmenter_type::fe2> trainer; configure_trainer(samples, trainer, params); res.segmenter2 = trainer.train(samples, segments); } break; case 3: { structural_sequence_segmentation_trainer<segmenter_type::fe3> trainer; configure_trainer(samples, trainer, params); res.segmenter3 = trainer.train(samples, segments); } break; case 4: { structural_sequence_segmentation_trainer<segmenter_type::fe4> trainer; configure_trainer(samples, trainer, params); res.segmenter4 = trainer.train(samples, segments); } break; case 5: { structural_sequence_segmentation_trainer<segmenter_type::fe5> trainer; configure_trainer(samples, trainer, params); res.segmenter5 = trainer.train(samples, segments); } break; case 6: { structural_sequence_segmentation_trainer<segmenter_type::fe6> trainer; configure_trainer(samples, trainer, params); res.segmenter6 = trainer.train(samples, segments); } break; case 7: { structural_sequence_segmentation_trainer<segmenter_type::fe7> trainer; configure_trainer(samples, trainer, params); res.segmenter7 = trainer.train(samples, segments); } break; default: throw dlib::error("Invalid mode"); } return res; } // ---------------------------------------------------------------------------------------- segmenter_type train_sparse ( const std::vector<std::vector<sparse_vect> >& samples, const std::vector<ranges>& segments, segmenter_params params ) { pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs"); int mode = 0; if (params.use_BIO_model) mode = mode*2 + 1; else mode = mode*2; if (params.use_high_order_features) mode = mode*2 + 1; else mode = mode*2; if (params.allow_negative_weights) mode = mode*2 + 1; else mode = mode*2; mode += 8; segmenter_type res; res.mode = mode; switch(mode) { case 8: { structural_sequence_segmentation_trainer<segmenter_type::fe8> trainer; configure_trainer(samples, trainer, params); res.segmenter8 = trainer.train(samples, segments); } break; case 9: { structural_sequence_segmentation_trainer<segmenter_type::fe9> trainer; configure_trainer(samples, trainer, params); res.segmenter9 = trainer.train(samples, segments); } break; case 10: { structural_sequence_segmentation_trainer<segmenter_type::fe10> trainer; configure_trainer(samples, trainer, params); res.segmenter10 = trainer.train(samples, segments); } break; case 11: { structural_sequence_segmentation_trainer<segmenter_type::fe11> trainer; configure_trainer(samples, trainer, params); res.segmenter11 = trainer.train(samples, segments); } break; case 12: { structural_sequence_segmentation_trainer<segmenter_type::fe12> trainer; configure_trainer(samples, trainer, params); res.segmenter12 = trainer.train(samples, segments); } break; case 13: { structural_sequence_segmentation_trainer<segmenter_type::fe13> trainer; configure_trainer(samples, trainer, params); res.segmenter13 = trainer.train(samples, segments); } break; case 14: { structural_sequence_segmentation_trainer<segmenter_type::fe14> trainer; configure_trainer(samples, trainer, params); res.segmenter14 = trainer.train(samples, segments); } break; case 15: { structural_sequence_segmentation_trainer<segmenter_type::fe15> trainer; configure_trainer(samples, trainer, params); res.segmenter15 = trainer.train(samples, segments); } break; default: throw dlib::error("Invalid mode"); } return res; } // ---------------------------------------------------------------------------------------- struct segmenter_test { double precision; double recall; double f1; }; void serialize(const segmenter_test& item, std::ostream& out) { serialize(item.precision, out); serialize(item.recall, out); serialize(item.f1, out); } void deserialize(segmenter_test& item, std::istream& in) { deserialize(item.precision, in); deserialize(item.recall, in); deserialize(item.f1, in); } std::string segmenter_test__str__(const segmenter_test& item) { std::ostringstream sout; sout << "precision: "<< item.precision << " recall: "<< item.recall << " f1-score: " << item.f1; return sout.str(); } std::string segmenter_test__repr__(const segmenter_test& item) { return "< " + segmenter_test__str__(item) + " >";} // ---------------------------------------------------------------------------------------- const segmenter_test test_sequence_segmenter1 ( const segmenter_type& segmenter, const std::vector<std::vector<dense_vect> >& samples, const std::vector<ranges>& segments ) { pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs"); matrix<double,1,3> res; switch(segmenter.mode) { case 0: res = test_sequence_segmenter(segmenter.segmenter0, samples, segments); break; case 1: res = test_sequence_segmenter(segmenter.segmenter1, samples, segments); break; case 2: res = test_sequence_segmenter(segmenter.segmenter2, samples, segments); break; case 3: res = test_sequence_segmenter(segmenter.segmenter3, samples, segments); break; case 4: res = test_sequence_segmenter(segmenter.segmenter4, samples, segments); break; case 5: res = test_sequence_segmenter(segmenter.segmenter5, samples, segments); break; case 6: res = test_sequence_segmenter(segmenter.segmenter6, samples, segments); break; case 7: res = test_sequence_segmenter(segmenter.segmenter7, samples, segments); break; default: throw dlib::error("Invalid mode"); } segmenter_test temp; temp.precision = res(0); temp.recall = res(1); temp.f1 = res(2); return temp; } const segmenter_test test_sequence_segmenter2 ( const segmenter_type& segmenter, const std::vector<std::vector<sparse_vect> >& samples, const std::vector<ranges>& segments ) { pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs"); matrix<double,1,3> res; switch(segmenter.mode) { case 8: res = test_sequence_segmenter(segmenter.segmenter8, samples, segments); break; case 9: res = test_sequence_segmenter(segmenter.segmenter9, samples, segments); break; case 10: res = test_sequence_segmenter(segmenter.segmenter10, samples, segments); break; case 11: res = test_sequence_segmenter(segmenter.segmenter11, samples, segments); break; case 12: res = test_sequence_segmenter(segmenter.segmenter12, samples, segments); break; case 13: res = test_sequence_segmenter(segmenter.segmenter13, samples, segments); break; case 14: res = test_sequence_segmenter(segmenter.segmenter14, samples, segments); break; case 15: res = test_sequence_segmenter(segmenter.segmenter15, samples, segments); break; default: throw dlib::error("Invalid mode"); } segmenter_test temp; temp.precision = res(0); temp.recall = res(1); temp.f1 = res(2); return temp; } // ---------------------------------------------------------------------------------------- const segmenter_test cross_validate_sequence_segmenter1 ( const std::vector<std::vector<dense_vect> >& samples, const std::vector<ranges>& segments, long folds, segmenter_params params ) { pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs"); pyassert(1 < folds && folds <= static_cast<long>(samples.size()), "folds argument is outside the valid range."); matrix<double,1,3> res; int mode = 0; if (params.use_BIO_model) mode = mode*2 + 1; else mode = mode*2; if (params.use_high_order_features) mode = mode*2 + 1; else mode = mode*2; if (params.allow_negative_weights) mode = mode*2 + 1; else mode = mode*2; switch(mode) { case 0: { structural_sequence_segmentation_trainer<segmenter_type::fe0> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 1: { structural_sequence_segmentation_trainer<segmenter_type::fe1> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 2: { structural_sequence_segmentation_trainer<segmenter_type::fe2> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 3: { structural_sequence_segmentation_trainer<segmenter_type::fe3> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 4: { structural_sequence_segmentation_trainer<segmenter_type::fe4> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 5: { structural_sequence_segmentation_trainer<segmenter_type::fe5> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 6: { structural_sequence_segmentation_trainer<segmenter_type::fe6> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 7: { structural_sequence_segmentation_trainer<segmenter_type::fe7> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; default: throw dlib::error("Invalid mode"); } segmenter_test temp; temp.precision = res(0); temp.recall = res(1); temp.f1 = res(2); return temp; } const segmenter_test cross_validate_sequence_segmenter2 ( const std::vector<std::vector<sparse_vect> >& samples, const std::vector<ranges>& segments, long folds, segmenter_params params ) { pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs"); pyassert(1 < folds && folds <= static_cast<long>(samples.size()), "folds argument is outside the valid range."); matrix<double,1,3> res; int mode = 0; if (params.use_BIO_model) mode = mode*2 + 1; else mode = mode*2; if (params.use_high_order_features) mode = mode*2 + 1; else mode = mode*2; if (params.allow_negative_weights) mode = mode*2 + 1; else mode = mode*2; mode += 8; switch(mode) { case 8: { structural_sequence_segmentation_trainer<segmenter_type::fe8> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 9: { structural_sequence_segmentation_trainer<segmenter_type::fe9> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 10: { structural_sequence_segmentation_trainer<segmenter_type::fe10> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 11: { structural_sequence_segmentation_trainer<segmenter_type::fe11> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 12: { structural_sequence_segmentation_trainer<segmenter_type::fe12> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 13: { structural_sequence_segmentation_trainer<segmenter_type::fe13> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 14: { structural_sequence_segmentation_trainer<segmenter_type::fe14> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; case 15: { structural_sequence_segmentation_trainer<segmenter_type::fe15> trainer; configure_trainer(samples, trainer, params); res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); } break; default: throw dlib::error("Invalid mode"); } segmenter_test temp; temp.precision = res(0); temp.recall = res(1); temp.f1 = res(2); return temp; } // ---------------------------------------------------------------------------------------- void bind_sequence_segmenter() { class_<segmenter_params>("segmenter_params", "This class is used to define all the optional parameters to the \n\ train_sequence_segmenter() and cross_validate_sequence_segmenter() routines. ") .def_readwrite("use_BIO_model", &segmenter_params::use_BIO_model) .def_readwrite("use_high_order_features", &segmenter_params::use_high_order_features) .def_readwrite("allow_negative_weights", &segmenter_params::allow_negative_weights) .def_readwrite("window_size", &segmenter_params::window_size) .def_readwrite("num_threads", &segmenter_params::num_threads) .def_readwrite("epsilon", &segmenter_params::epsilon) .def_readwrite("max_cache_size", &segmenter_params::max_cache_size) .def_readwrite("C", &segmenter_params::C, "SVM C parameter") .def_readwrite("be_verbose", &segmenter_params::be_verbose) .def("__repr__",&segmenter_params__repr__) .def("__str__",&segmenter_params__str__) .def_pickle(serialize_pickle<segmenter_params>()); class_<segmenter_type> ("segmenter_type") .def("__call__", &segmenter_type::segment_sequence_dense) .def("__call__", &segmenter_type::segment_sequence_sparse) .def_readonly("weights", &segmenter_type::get_weights) .def_pickle(serialize_pickle<segmenter_type>()); class_<segmenter_test> ("segmenter_test") .def_readwrite("precision", &segmenter_test::precision) .def_readwrite("recall", &segmenter_test::recall) .def_readwrite("f1", &segmenter_test::f1) .def("__repr__",&segmenter_test__repr__) .def("__str__",&segmenter_test__str__) .def_pickle(serialize_pickle<segmenter_test>()); using boost::python::arg; def("train_sequence_segmenter", train_dense, (arg("samples"), arg("segments"), arg("params")=segmenter_params())); def("train_sequence_segmenter", train_sparse, (arg("samples"), arg("segments"), arg("params")=segmenter_params())); def("test_sequence_segmenter", test_sequence_segmenter1); def("test_sequence_segmenter", test_sequence_segmenter2); def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter1, (arg("samples"), arg("segments"), arg("folds"), arg("params")=segmenter_params())); def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter2, (arg("samples"), arg("segments"), arg("folds"), arg("params")=segmenter_params())); }