// Copyright (C) 2013 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include "testing_results.h"
#include <boost/shared_ptr.hpp>
#include <boost/python/args.hpp>
#include <dlib/svm.h>
using namespace dlib;
using namespace std;
using namespace boost::python;
typedef matrix<double,0,1> sample_type;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
template <typename decision_function>
double predict (
const decision_function& df,
const typename decision_function::kernel_type::sample_type& samp
)
{
typedef typename decision_function::kernel_type::sample_type T;
if (df.basis_vectors.size() == 0)
{
return 0;
}
else if (is_matrix<T>::value && df.basis_vectors(0).size() != samp.size())
{
std::ostringstream sout;
sout << "Input vector should have " << df.basis_vectors(0).size()
<< " dimensions, not " << samp.size() << ".";
PyErr_SetString( PyExc_ValueError, sout.str().c_str() );
boost::python::throw_error_already_set();
}
return df(samp);
}
template <typename kernel_type>
void add_df (
const std::string name
)
{
typedef decision_function<kernel_type> df_type;
class_<df_type>(name.c_str())
.def("__call__", &predict<df_type>)
.def_pickle(serialize_pickle<df_type>());
}
template <typename df_type>
typename df_type::sample_type get_weights(
const df_type& df
)
{
if (df.basis_vectors.size() == 0)
{
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
boost::python::throw_error_already_set();
}
df_type temp = simplify_linear_decision_function(df);
return temp.basis_vectors(0);
}
template <typename df_type>
typename df_type::scalar_type get_bias(
const df_type& df
)
{
if (df.basis_vectors.size() == 0)
{
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
boost::python::throw_error_already_set();
}
return df.b;
}
template <typename df_type>
void set_bias(
df_type& df,
double b
)
{
if (df.basis_vectors.size() == 0)
{
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
boost::python::throw_error_already_set();
}
df.b = b;
}
template <typename kernel_type>
void add_linear_df (
const std::string name
)
{
typedef decision_function<kernel_type> df_type;
class_<df_type>(name.c_str())
.def("__call__", predict<df_type>)
.add_property("weights", &get_weights<df_type>)
.add_property("bias", get_bias<df_type>, set_bias<df_type>)
.def_pickle(serialize_pickle<df_type>());
}
// ----------------------------------------------------------------------------------------
std::string binary_test__str__(const binary_test& item)
{
std::ostringstream sout;
sout << "class1_accuracy: "<< item.class1_accuracy << " class2_accuracy: "<< item.class2_accuracy;
return sout.str();
}
std::string binary_test__repr__(const binary_test& item) { return "< " + binary_test__str__(item) + " >";}
std::string regression_test__str__(const regression_test& item)
{
std::ostringstream sout;
sout << "mean_squared_error: "<< item.mean_squared_error << " R_squared: "<< item.R_squared;
return sout.str();
}
std::string regression_test__repr__(const regression_test& item) { return "< " + regression_test__str__(item) + " >";}
std::string ranking_test__str__(const ranking_test& item)
{
std::ostringstream sout;
sout << "ranking_accuracy: "<< item.ranking_accuracy << " mean_ap: "<< item.mean_ap;
return sout.str();
}
std::string ranking_test__repr__(const ranking_test& item) { return "< " + ranking_test__str__(item) + " >";}
// ----------------------------------------------------------------------------------------
template <typename K>
binary_test _test_binary_decision_function (
const decision_function<K>& dec_funct,
const std::vector<typename K::sample_type>& x_test,
const std::vector<double>& y_test
) { return binary_test(test_binary_decision_function(dec_funct, x_test, y_test)); }
template <typename K>
regression_test _test_regression_function (
const decision_function<K>& reg_funct,
const std::vector<typename K::sample_type>& x_test,
const std::vector<double>& y_test
) { return regression_test(test_regression_function(reg_funct, x_test, y_test)); }
template < typename K >
ranking_test _test_ranking_function1 (
const decision_function<K>& funct,
const std::vector<ranking_pair<typename K::sample_type> >& samples
) { return ranking_test(test_ranking_function(funct, samples)); }
template < typename K >
ranking_test _test_ranking_function2 (
const decision_function<K>& funct,
const ranking_pair<typename K::sample_type>& sample
) { return ranking_test(test_ranking_function(funct, sample)); }
void bind_decision_functions()
{
using boost::python::arg;
add_linear_df<linear_kernel<sample_type> >("_decision_function_linear");
add_linear_df<sparse_linear_kernel<sparse_vect> >("_decision_function_sparse_linear");
add_df<histogram_intersection_kernel<sample_type> >("_decision_function_histogram_intersection");
add_df<sparse_histogram_intersection_kernel<sparse_vect> >("_decision_function_sparse_histogram_intersection");
add_df<polynomial_kernel<sample_type> >("_decision_function_polynomial");
add_df<sparse_polynomial_kernel<sparse_vect> >("_decision_function_sparse_polynomial");
add_df<radial_basis_kernel<sample_type> >("_decision_function_radial_basis");
add_df<sparse_radial_basis_kernel<sparse_vect> >("_decision_function_sparse_radial_basis");
add_df<sigmoid_kernel<sample_type> >("_decision_function_sigmoid");
add_df<sparse_sigmoid_kernel<sparse_vect> >("_decision_function_sparse_sigmoid");
def("test_binary_decision_function", _test_binary_decision_function<linear_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<sparse_linear_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<radial_basis_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<sparse_radial_basis_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<polynomial_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<sparse_polynomial_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<histogram_intersection_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<sparse_histogram_intersection_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<sigmoid_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<sparse_sigmoid_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_regression_function", _test_regression_function<linear_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<sparse_linear_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<radial_basis_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<sparse_radial_basis_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<histogram_intersection_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<sparse_histogram_intersection_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<sigmoid_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<sparse_sigmoid_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<polynomial_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<sparse_polynomial_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_ranking_function", _test_ranking_function1<linear_kernel<sample_type> >,
(arg("function"), arg("samples")));
def("test_ranking_function", _test_ranking_function1<sparse_linear_kernel<sparse_vect> >,
(arg("function"), arg("samples")));
def("test_ranking_function", _test_ranking_function2<linear_kernel<sample_type> >,
(arg("function"), arg("sample")));
def("test_ranking_function", _test_ranking_function2<sparse_linear_kernel<sparse_vect> >,
(arg("function"), arg("sample")));
class_<binary_test>("_binary_test")
.def("__str__", binary_test__str__)
.def("__repr__", binary_test__repr__)
.add_property("class1_accuracy", &binary_test::class1_accuracy,
"A value between 0 and 1, measures accuracy on the +1 class.")
.add_property("class2_accuracy", &binary_test::class2_accuracy,
"A value between 0 and 1, measures accuracy on the -1 class.");
class_<ranking_test>("_ranking_test")
.def("__str__", ranking_test__str__)
.def("__repr__", ranking_test__repr__)
.add_property("ranking_accuracy", &ranking_test::ranking_accuracy,
"A value between 0 and 1, measures the fraction of times a relevant sample was ordered before a non-relevant sample.")
.add_property("mean_ap", &ranking_test::mean_ap,
"A value between 0 and 1, measures the mean average precision of the ranking.");
class_<regression_test>("_regression_test")
.def("__str__", regression_test__str__)
.def("__repr__", regression_test__repr__)
.add_property("mean_squared_error", ®ression_test::mean_squared_error,
"The mean squared error of a regression function on a dataset.")
.add_property("R_squared", ®ression_test::R_squared,
"A value between 0 and 1, measures the squared correlation between the output of a \n"
"regression function and the target values.");
}