// Copyright (C) 2014 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #include #include #include #include #include #include #ifndef DLIB_NO_GUI_SUPPORT #include #endif #include "simple_object_detector.h" using namespace dlib; using namespace std; using namespace boost::python; template void resize(T& v, unsigned long n) { v.resize(n); } // ---------------------------------------------------------------------------------------- long left(const rectangle& r) { return r.left(); } long top(const rectangle& r) { return r.top(); } long right(const rectangle& r) { return r.right(); } long bottom(const rectangle& r) { return r.bottom(); } long width(const rectangle& r) { return r.width(); } long height(const rectangle& r) { return r.height(); } string print_rectangle_str(const rectangle& r) { std::ostringstream sout; sout << r; return sout.str(); } string print_rectangle_repr(const rectangle& r) { std::ostringstream sout; sout << "rectangle(" << r.left() << "," << r.top() << "," << r.right() << "," << r.bottom() << ")"; return sout.str(); } // ---------------------------------------------------------------------------------------- string print_rgb_pixel_str(const rgb_pixel& p) { std::ostringstream sout; sout << "red: "<< (int)p.red << ", green: "<< (int)p.green << ", blue: "<< (int)p.blue; return sout.str(); } string print_rgb_pixel_repr(const rgb_pixel& p) { std::ostringstream sout; sout << "rgb_pixel(" << p.red << "," << p.green << "," << p.blue << ")"; return sout.str(); } // ---------------------------------------------------------------------------------------- std::vector run_detector ( frontal_face_detector& detector, object img, const unsigned int upsampling_amount ) { pyramid_down<2> pyr; if (is_gray_python_image(img)) { array2d temp; if (upsampling_amount == 0) { return detector(numpy_gray_image(img)); } else { pyramid_up(numpy_gray_image(img), temp, pyr); unsigned int levels = upsampling_amount-1; while (levels > 0) { levels--; pyramid_up(temp); } std::vector res = detector(temp); for (unsigned long i = 0; i < res.size(); ++i) res[i] = pyr.rect_down(res[i], upsampling_amount); return res; } } else if (is_rgb_python_image(img)) { array2d temp; if (upsampling_amount == 0) { return detector(numpy_rgb_image(img)); } else { pyramid_up(numpy_rgb_image(img), temp, pyr); unsigned int levels = upsampling_amount-1; while (levels > 0) { levels--; pyramid_up(temp); } std::vector res = detector(temp); for (unsigned long i = 0; i < res.size(); ++i) res[i] = pyr.rect_down(res[i], upsampling_amount); return res; } } else { throw dlib::error("Unsupported image type, must be 8bit gray or RGB image."); } } // ---------------------------------------------------------------------------------------- struct simple_object_detector_py { simple_object_detector detector; unsigned int upsampling_amount; std::vector run_detector1 (object img, const unsigned int upsampling_amount_) { return ::run_detector(detector, img, upsampling_amount_); } std::vector run_detector2 (object img) { return ::run_detector(detector, img, upsampling_amount); } }; void serialize (const simple_object_detector_py& item, std::ostream& out) { int version = 1; serialize(item.detector, out); serialize(version, out); serialize(item.upsampling_amount, out); } void deserialize (simple_object_detector_py& item, std::istream& in) { int version = 0; deserialize(item.detector, in); deserialize(version, in); if (version != 1) throw dlib::serialization_error("Unexpected version found while deserializing a simple_object_detector."); deserialize(item.upsampling_amount, in); } // ---------------------------------------------------------------------------------------- #ifndef DLIB_NO_GUI_SUPPORT void image_window_set_image_fhog_detector ( image_window& win, const frontal_face_detector& det ) { win.set_image(draw_fhog(det)); } void image_window_set_image_simple_detector ( image_window& win, const simple_object_detector_py& det ) { win.set_image(draw_fhog(det.detector)); } void image_window_set_image ( image_window& win, object img ) { if (is_gray_python_image(img)) return win.set_image(numpy_gray_image(img)); else if (is_rgb_python_image(img)) return win.set_image(numpy_rgb_image(img)); else throw dlib::error("Unsupported image type, must be 8bit gray or RGB image."); } void add_red_overlay_rects ( image_window& win, const std::vector& rects ) { win.add_overlay(rects, rgb_pixel(255,0,0)); } // ---------------------------------------------------------------------------------------- boost::shared_ptr make_image_window_from_image(object img) { boost::shared_ptr win(new image_window); image_window_set_image(*win, img); return win; } boost::shared_ptr make_image_window_from_image_and_title(object img, const string& title) { boost::shared_ptr win(new image_window); image_window_set_image(*win, img); win->set_title(title); return win; } #endif // ---------------------------------------------------------------------------------------- string print_simple_test_results(const simple_test_results& r) { std::ostringstream sout; sout << "precision: "< > ignore(num_images), boxes(num_images); dlib::array > images(num_images); // Now copy the data into dlib based objects so we can call the trainer. for (unsigned long i = 0; i < num_images; ++i) { const unsigned long num_boxes = len(pyboxes[i]); for (unsigned long j = 0; j < num_boxes; ++j) boxes[i].push_back(extract(pyboxes[i][j])); object img = pyimages[i]; if (is_gray_python_image(img)) assign_image(images[i], numpy_gray_image(img)); else if (is_rgb_python_image(img)) assign_image(images[i], numpy_rgb_image(img)); else throw dlib::error("Unsupported image type, must be 8bit gray or RGB image."); } train_simple_object_detector_on_images("", images, boxes, ignore, detector_output_filename, options); } // ---------------------------------------------------------------------------------------- void bind_object_detection() { using boost::python::arg; class_("simple_object_detector_training_options", "This object is a container for the options to the train_simple_object_detector() routine.") .add_property("be_verbose", &simple_object_detector_training_options::be_verbose, &simple_object_detector_training_options::be_verbose, "If true, train_simple_object_detector() will print out a lot of information to the screen while training." ) .add_property("add_left_right_image_flips", &simple_object_detector_training_options::add_left_right_image_flips, &simple_object_detector_training_options::add_left_right_image_flips, "if true, train_simple_object_detector() will assume the objects are \n\ left/right symmetric and add in left right flips of the training \n\ images. This doubles the size of the training dataset." /*! if true, train_simple_object_detector() will assume the objects are left/right symmetric and add in left right flips of the training images. This doubles the size of the training dataset. !*/ ) .add_property("detection_window_size", &simple_object_detector_training_options::detection_window_size, &simple_object_detector_training_options::detection_window_size, "The sliding window used will have about this many pixels inside it.") .add_property("C", &simple_object_detector_training_options::C, &simple_object_detector_training_options::C, "C is the usual SVM C regularization parameter. So it is passed to \n\ structural_object_detection_trainer::set_c(). Larger values of C \n\ will encourage the trainer to fit the data better but might lead to \n\ overfitting. Therefore, you must determine the proper setting of \n\ this parameter experimentally." /*! C is the usual SVM C regularization parameter. So it is passed to structural_object_detection_trainer::set_c(). Larger values of C will encourage the trainer to fit the data better but might lead to overfitting. Therefore, you must determine the proper setting of this parameter experimentally. !*/ ) .add_property("epsilon", &simple_object_detector_training_options::epsilon, &simple_object_detector_training_options::epsilon, "epsilon is the stopping epsilon. Smaller values make the trainer's \n\ solver more accurate but might take longer to train." /*! epsilon is the stopping epsilon. Smaller values make the trainer's solver more accurate but might take longer to train. !*/ ) .add_property("num_threads", &simple_object_detector_training_options::num_threads, &simple_object_detector_training_options::num_threads, "train_simple_object_detector() will use this many threads of \n\ execution. Set this to the number of CPU cores on your machine to \n\ obtain the fastest training speed." /*! train_simple_object_detector() will use this many threads of execution. Set this to the number of CPU cores on your machine to obtain the fastest training speed. !*/ ); class_("simple_test_results") .add_property("precision", &simple_test_results::precision) .add_property("recall", &simple_test_results::recall) .add_property("average_precision", &simple_test_results::average_precision) .def("__str__", &::print_simple_test_results); { typedef rectangle type; class_("rectangle", "This object represents a rectangular area of an image.") .def(init( (arg("left"),arg("top"),arg("right"),arg("bottom")) )) .def("left", &::left) .def("top", &::top) .def("right", &::right) .def("bottom", &::bottom) .def("width", &::width) .def("height", &::height) .def("__str__", &::print_rectangle_str) .def("__repr__", &::print_rectangle_repr) .def_pickle(serialize_pickle()); } def("get_frontal_face_detector", get_frontal_face_detector, "Returns the default face detector"); def("train_simple_object_detector", train_simple_object_detector, (arg("dataset_filename"), arg("detector_output_filename"), arg("options")), "requires \n\ - options.C > 0 \n\ ensures \n\ - Uses the structural_object_detection_trainer to train a \n\ simple_object_detector based on the labeled images in the XML file \n\ dataset_filename. This function assumes the file dataset_filename is in the \n\ XML format produced by dlib's save_image_dataset_metadata() routine. \n\ - This function will apply a reasonable set of default parameters and \n\ preprocessing techniques to the training procedure for simple_object_detector \n\ objects. So the point of this function is to provide you with a very easy \n\ way to train a basic object detector. \n\ - The trained object detector is serialized to the file detector_output_filename." /*! requires - options.C > 0 ensures - Uses the structural_object_detection_trainer to train a simple_object_detector based on the labeled images in the XML file dataset_filename. This function assumes the file dataset_filename is in the XML format produced by dlib's save_image_dataset_metadata() routine. - This function will apply a reasonable set of default parameters and preprocessing techniques to the training procedure for simple_object_detector objects. So the point of this function is to provide you with a very easy way to train a basic object detector. - The trained object detector is serialized to the file detector_output_filename. !*/ ); def("train_simple_object_detector", train_simple_object_detector_on_images_py, (arg("images"), arg("boxes"), arg("detector_output_filename"), arg("options")), "requires \n\ - options.C > 0 \n\ - len(images) == len(boxes) \n\ - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\ - boxes should be a list of lists of dlib.rectangle object. \n\ ensures \n\ - Uses the structural_object_detection_trainer to train a \n\ simple_object_detector based on the labeled images and bounding boxes. \n\ - This function will apply a reasonable set of default parameters and \n\ preprocessing techniques to the training procedure for simple_object_detector \n\ objects. So the point of this function is to provide you with a very easy \n\ way to train a basic object detector. \n\ - The trained object detector is serialized to the file detector_output_filename." /*! requires - options.C > 0 - len(images) == len(boxes) - images should be a list of numpy matrices that represent images, either RGB or grayscale. - boxes should be a dlib.rectangles object (i.e. an array of rectangles). - boxes should be a list of lists of dlib.rectangle object. ensures - Uses the structural_object_detection_trainer to train a simple_object_detector based on the labeled images and bounding boxes. - This function will apply a reasonable set of default parameters and preprocessing techniques to the training procedure for simple_object_detector objects. So the point of this function is to provide you with a very easy way to train a basic object detector. - The trained object detector is serialized to the file detector_output_filename. !*/ ); def("test_simple_object_detector", test_simple_object_detector, (arg("dataset_filename"), arg("detector_filename")), "ensures \n\ - Loads an image dataset from dataset_filename. We assume dataset_filename is \n\ a file using the XML format written by save_image_dataset_metadata(). \n\ - Loads a simple_object_detector from the file detector_filename. This means \n\ detector_filename should be a file produced by the train_simple_object_detector() \n\ routine. \n\ - This function tests the detector against the dataset and returns the \n\ precision, recall, and average precision of the detector. In fact, The \n\ return value of this function is identical to that of dlib's \n\ test_object_detection_function() routine. Therefore, see the documentation \n\ for test_object_detection_function() for a detailed definition of these \n\ metrics. " /*! ensures - Loads an image dataset from dataset_filename. We assume dataset_filename is a file using the XML format written by save_image_dataset_metadata(). - Loads a simple_object_detector from the file detector_filename. This means detector_filename should be a file produced by the train_simple_object_detector() routine. - This function tests the detector against the dataset and returns the precision, recall, and average precision of the detector. In fact, The return value of this function is identical to that of dlib's test_object_detection_function() routine. Therefore, see the documentation for test_object_detection_function() for a detailed definition of these metrics. !*/ ); { typedef simple_object_detector_py type; class_("simple_object_detector", "This object represents a sliding window histogram-of-oriented-gradients based object detector.") .def("__init__", make_constructor(&load_object_from_file), "Loads a simple_object_detector from a file that contains the output of the \n\ train_simple_object_detector() routine." /*! Loads a simple_object_detector from a file that contains the output of the train_simple_object_detector() routine. !*/) .def("__call__", &type::run_detector1, (arg("image"), arg("upsample_num_times")), "requires \n\ - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\ image. \n\ - upsample_num_times >= 0 \n\ ensures \n\ - This function runs the object detector on the input image and returns \n\ a list of detections. \n\ - Upsamples the image upsample_num_times before running the basic \n\ detector. If you don't know how many times you want to upsample then \n\ don't provide a value for upsample_num_times and an appropriate \n\ default will be used." /*! requires - image is a numpy ndarray containing either an 8bit grayscale or RGB image. - upsample_num_times >= 0 ensures - This function runs the object detector on the input image and returns a list of detections. - Upsamples the image upsample_num_times before running the basic detector. If you don't know how many times you want to upsample then don't provide a value for upsample_num_times and an appropriate default will be used. !*/ ) .def("__call__", &type::run_detector2, (arg("image")), "requires \n\ - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\ image. \n\ ensures \n\ - This function runs the object detector on the input image and returns \n\ a list of detections. " /*! requires - image is a numpy ndarray containing either an 8bit grayscale or RGB image. ensures - This function runs the object detector on the input image and returns a list of detections. !*/ ) .def_pickle(serialize_pickle()); } { typedef frontal_face_detector type; class_("fhog_object_detector", "This object represents a sliding window histogram-of-oriented-gradients based object detector.") .def("__init__", make_constructor(&load_object_from_file), "Loads a fhog_object_detector from a file that contains a serialized \n\ object_detector>> object. " ) .def("__call__", &::run_detector, (arg("image"), arg("upsample_num_times")=0), "requires \n\ - image is a numpy ndarray containing either an 8bit \n\ grayscale or RGB image. \n\ - upsample_num_times >= 0 \n\ ensures \n\ - This function runs the object detector on the input image \n\ and returns a list of detections. \n\ - You can detect smaller objects by upsampling the image \n\ before running the detector. This function can do that \n\ for you automatically if you set upsample_num_times to a \n\ non-zero value. Specifically, the image is doubled in \n\ size upsample_num_times times. " /*! requires - image is a numpy ndarray containing either an 8bit grayscale or RGB image. - upsample_num_times >= 0 ensures - This function runs the object detector on the input image and returns a list of detections. - You can detect smaller objects by upsampling the image before running the detector. This function can do that for you automatically if you set upsample_num_times to a non-zero value. Specifically, the image is doubled in size upsample_num_times times. !*/ ) .def_pickle(serialize_pickle()); } #ifndef DLIB_NO_GUI_SUPPORT { typedef image_window type; typedef void (image_window::*set_title_funct)(const std::string&); typedef void (image_window::*add_overlay_funct)(const std::vector& r, rgb_pixel p); class_("image_window", "This is a GUI window capable of showing images on the screen.") .def("__init__", make_constructor(&make_image_window_from_image), "Create an image window that displays the given numpy image.") .def("__init__", make_constructor(&make_image_window_from_image_and_title), "Create an image window that displays the given numpy image and also has the given title.") .def("set_image", image_window_set_image, arg("image"), "Make the image_window display the given image.") .def("set_image", image_window_set_image_fhog_detector, arg("detector"), "Make the image_window display the given HOG detector's filters.") .def("set_image", image_window_set_image_simple_detector, arg("detector"), "Make the image_window display the given HOG detector's filters.") .def("set_title", (set_title_funct)&type::set_title, arg("title"), "Set the title of the window to the given value.") .def("clear_overlay", &type::clear_overlay, "Remove all overlays from the image_window.") .def("add_overlay", (add_overlay_funct)&type::add_overlay, (arg("rectangles"), arg("color")), "Add a list of rectangles to the image_window. They will be displayed as boxes of the given color.") .def("add_overlay", add_red_overlay_rects, "Add a list of rectangles to the image_window. They will be displayed as red boxes.") .def("wait_until_closed", &type::wait_until_closed, "This function blocks until the window is closed."); } #endif { typedef std::vector type; class_("rectangles", "An array of rectangle objects.") .def(vector_indexing_suite()) .def("clear", &type::clear) .def("resize", resize) .def_pickle(serialize_pickle()); } class_("rgb_pixel") .def(init( (arg("red"),arg("green"),arg("blue")) )) .def("__str__", &print_rgb_pixel_str) .def("__repr__", &print_rgb_pixel_repr) .add_property("red", &rgb_pixel::red) .add_property("green", &rgb_pixel::green) .add_property("blue", &rgb_pixel::blue); } // ----------------------------------------------------------------------------------------