Specialization for a view of a single value (0-dimensional) More...
Public Member Functions | |
|
__host__ __device__ SubTensor < TensorType, 0, PtrTraits > | operator= (typename TensorType::DataType val) |
| __host__ __device__ | operator typename TensorType::DataType & () |
| __host__ __device__ | operator const typename TensorType::DataType & () const |
|
__host__ __device__ TensorType::DataType * | operator& () |
|
__host__ __device__ const TensorType::DataType * | operator& () const |
|
__host__ __device__ TensorType::DataPtrType | data () |
| Returns a raw accessor to our slice. | |
|
__host__ __device__ const TensorType::DataPtrType | data () const |
| Returns a raw accessor to our slice (const). | |
| template<typename T > | |
| __host__ __device__ T & | as () |
| Cast to a different datatype. | |
| template<typename T > | |
| __host__ __device__ const T & | as () const |
| Cast to a different datatype (const). | |
| template<typename T > | |
| __host__ __device__ PtrTraits < T >::PtrType | dataAs () |
| Cast to a different datatype. | |
| template<typename T > | |
| __host__ __device__ PtrTraits < const T >::PtrType | dataAs () const |
| Cast to a different datatype (const) | |
| __device__ TensorType::DataType | ldg () const |
| Use the texture cache for reads. | |
| template<typename T > | |
| __device__ T | ldgAs () const |
| Use the texture cache for reads; cast as a particular type. | |
Protected Member Functions | |
| __host__ __device__ | SubTensor (TensorType &t, typename TensorType::DataPtrType data) |
Protected Attributes | |
| TensorType & | tensor_ |
| The tensor we're referencing. | |
| TensorType::DataPtrType const | data_ |
| Where our value is located. | |
Friends | |
| class | SubTensor< TensorType, 1, PtrTraits > |
| One dimension greater can create us. | |
| class | Tensor< typename TensorType::DataType, 1, TensorType::IsInnerContig, typename TensorType::IndexType, PtrTraits > |
| Our parent tensor can create us. | |
Specialization for a view of a single value (0-dimensional)
Definition at line 377 of file Tensor.cuh.
1.8.5