train_tag.py 18.3 KB
Newer Older
张彦钊's avatar
张彦钊 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#coding=utf-8

#from __future__ import absolute_import
#from __future__ import division
#from __future__ import print_function

#import argparse
import shutil
import os
import json
from datetime import date, timedelta
import tensorflow as tf
import subprocess
import time
import glob
import random

#################### CMD Arguments ####################
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer("dist_mode", 0, "distribuion mode {0-loacal, 1-single_dist, 2-multi_dist}")
tf.app.flags.DEFINE_string("ps_hosts", '', "Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("worker_hosts", '', "Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("job_name", '', "One of 'ps', 'worker'")
tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")
tf.app.flags.DEFINE_integer("num_threads", 16, "Number of threads")
tf.app.flags.DEFINE_integer("feature_size", 0, "Number of features")
tf.app.flags.DEFINE_integer("field_size", 0, "Number of common fields")
tf.app.flags.DEFINE_integer("embedding_size", 32, "Embedding size")
tf.app.flags.DEFINE_integer("num_epochs", 10, "Number of epochs")
tf.app.flags.DEFINE_integer("batch_size", 64, "Number of batch size")
tf.app.flags.DEFINE_integer("log_steps", 1000, "save summary every steps")
tf.app.flags.DEFINE_float("learning_rate", 0.0005, "learning rate")
tf.app.flags.DEFINE_float("l2_reg", 0.0001, "L2 regularization")
tf.app.flags.DEFINE_string("loss_type", 'log_loss', "loss type {square_loss, log_loss}")
tf.app.flags.DEFINE_float("ctr_task_wgt", 0.5, "loss weight of ctr task")
tf.app.flags.DEFINE_string("optimizer", 'Adam', "optimizer type {Adam, Adagrad, GD, Momentum}")
tf.app.flags.DEFINE_string("deep_layers", '256,128,64', "deep layers")
tf.app.flags.DEFINE_string("dropout", '0.5,0.5,0.5', "dropout rate")
tf.app.flags.DEFINE_boolean("batch_norm", False, "perform batch normaization (True or False)")
tf.app.flags.DEFINE_float("batch_norm_decay", 0.9, "decay for the moving average(recommend trying decay=0.9)")
tf.app.flags.DEFINE_string("hdfs_dir", '', "hdfs dir")
tf.app.flags.DEFINE_string("local_dir", '', "local dir")
tf.app.flags.DEFINE_string("dt_dir", '', "data dt partition")
tf.app.flags.DEFINE_string("model_dir", '', "model check point dir")
tf.app.flags.DEFINE_string("servable_model_dir", '', "export servable model for TensorFlow Serving")
tf.app.flags.DEFINE_string("task_type", 'train', "task type {train, infer, eval, export}")
tf.app.flags.DEFINE_boolean("clear_existing_model", False, "clear existing model or not")


def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
    print('Parsing', filenames)
    def _parse_fn(record):
        features = {
            "y": tf.FixedLenFeature([], tf.float32),
            "z": tf.FixedLenFeature([], tf.float32),
            "ids": tf.FixedLenFeature([FLAGS.field_size], tf.int64),
            "app_list": tf.VarLenFeature(tf.int64),
            "level2_list": tf.VarLenFeature(tf.int64),
            "level3_list": tf.VarLenFeature(tf.int64),
            "tag1_list": tf.VarLenFeature(tf.int64),
            "tag2_list": tf.VarLenFeature(tf.int64),
            "tag3_list": tf.VarLenFeature(tf.int64),
            "tag4_list": tf.VarLenFeature(tf.int64),
            "tag5_list": tf.VarLenFeature(tf.int64),
            "tag6_list": tf.VarLenFeature(tf.int64),
            "tag7_list": tf.VarLenFeature(tf.int64),
张彦钊's avatar
张彦钊 committed
67 68
            "search_tag2_list": tf.VarLenFeature(tf.int64),
            "search_tag3_list": tf.VarLenFeature(tf.int64)
张彦钊's avatar
张彦钊 committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        }
        parsed = tf.parse_single_example(record, features)
        y = parsed.pop('y')
        z = parsed.pop('z')
        return parsed, {"y": y, "z": z}

    # Extract lines from input files using the Dataset API, can pass one filename or filename list
    # dataset = tf.data.TFRecordDataset(filenames).map(_parse_fn, num_parallel_calls=8).prefetch(500000)    # multi-thread pre-process then prefetch

    # Randomizes input using a window of 256 elements (read into memory)
    # if perform_shuffle:
    #     dataset = dataset.shuffle(buffer_size=256)

    # epochs from blending together.
    # dataset = dataset.repeat(num_epochs)
    # dataset = dataset.batch(batch_size) # Batch size to use

    files = tf.data.Dataset.list_files(filenames)
    dataset = files.apply(
        tf.data.experimental.parallel_interleave(
            lambda  file: tf.data.TFRecordDataset(file),
            cycle_length=8
        )
    )

    dataset = dataset.apply(tf.data.experimental.map_and_batch(map_func=_parse_fn, batch_size=batch_size, num_parallel_calls=8))
    dataset = dataset.prefetch(10000)


    # dataset = dataset.padded_batch(batch_size, padded_shapes=({"feeds_ids": [None], "feeds_vals": [None], "title_ids": [None]}, [None]))   #不定长补齐
    #return dataset.make_one_shot_iterator()
    iterator = dataset.make_one_shot_iterator()
    batch_features, batch_labels = iterator.get_next()
    #return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels
    #print("-"*100)
    #print(batch_features,batch_labels)
    return batch_features, batch_labels


def model_fn(features, labels, mode, params):
    """Bulid Model function f(x) for Estimator."""
    #------hyperparameters----
    field_size = params["field_size"]
    feature_size = params["feature_size"]
    embedding_size = params["embedding_size"]
    l2_reg = params["l2_reg"]
    learning_rate = params["learning_rate"]
    #optimizer = params["optimizer"]
    layers = list(map(int, params["deep_layers"].split(',')))
    dropout = list(map(float, params["dropout"].split(',')))
    ctr_task_wgt = params["ctr_task_wgt"]
    common_dims = field_size*embedding_size

    #------bulid weights------
    Feat_Emb = tf.get_variable(name='embeddings', shape=[feature_size, embedding_size], initializer=tf.glorot_normal_initializer())

    feat_ids = features['ids']
    app_list = features['app_list']
    level2_list = features['level2_list']
    level3_list = features['level3_list']
    tag1_list = features['tag1_list']
    tag2_list = features['tag2_list']
    tag3_list = features['tag3_list']
    tag4_list = features['tag4_list']
    tag5_list = features['tag5_list']
    tag6_list = features['tag6_list']
    tag7_list = features['tag7_list']
张彦钊's avatar
张彦钊 committed
136 137
    search_tag2_list = features['search_tag2_list']
    search_tag3_list = features['search_tag3_list']
张彦钊's avatar
张彦钊 committed
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

    if FLAGS.task_type != "infer":
        y = labels['y']
        z = labels['z']

    #------build f(x)------
    with tf.variable_scope("Shared-Embedding-layer"):
        embedding_id = tf.nn.embedding_lookup(Feat_Emb,feat_ids)
        app_id = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=app_list, sp_weights=None, combiner="sum")
        level2 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=level2_list, sp_weights=None, combiner="sum")
        level3 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=level3_list, sp_weights=None, combiner="sum")
        tag1 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag1_list, sp_weights=None, combiner="sum")
        tag2 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag2_list, sp_weights=None, combiner="sum")
        tag3 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag3_list, sp_weights=None, combiner="sum")
        tag4 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag4_list, sp_weights=None, combiner="sum")
        tag5 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag5_list, sp_weights=None, combiner="sum")
        tag6 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag6_list, sp_weights=None, combiner="sum")
        tag7 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag7_list, sp_weights=None, combiner="sum")
        search_tag2 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=search_tag2_list, sp_weights=None, combiner="sum")
        search_tag3 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=search_tag3_list, sp_weights=None, combiner="sum")


        # x_concat = tf.reshape(embedding_id,shape=[-1, common_dims])  # None * (F * K)
        x_concat = tf.concat([tf.reshape(embedding_id, shape=[-1, common_dims]), app_id, level2, level3, tag1,
                              tag2, tag3, tag4, tag5, tag6, tag7,search_tag2,search_tag3], axis=1)

    with tf.name_scope("CVR_Task"):
        if mode == tf.estimator.ModeKeys.TRAIN:
            train_phase = True
        else:
            train_phase = False
        x_cvr = x_concat
        for i in range(len(layers)):
            x_cvr = tf.contrib.layers.fully_connected(inputs=x_cvr, num_outputs=layers[i], \
                weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='cvr_mlp%d' % i)

            if FLAGS.batch_norm:
                x_cvr = batch_norm_layer(x_cvr, train_phase=train_phase, scope_bn='cvr_bn_%d' %i)       #放在RELU之后 https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
            if mode == tf.estimator.ModeKeys.TRAIN:
                x_cvr = tf.nn.dropout(x_cvr, keep_prob=dropout[i])                                  #Apply Dropout after all BN layers and set dropout=0.8(drop_ratio=0.2)

        y_cvr = tf.contrib.layers.fully_connected(inputs=x_cvr, num_outputs=1, activation_fn=tf.identity, \
            weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='cvr_out')
        y_cvr = tf.reshape(y_cvr,shape=[-1])

    with tf.name_scope("CTR_Task"):
        if mode == tf.estimator.ModeKeys.TRAIN:
            train_phase = True
        else:
            train_phase = False

        x_ctr = x_concat
        for i in range(len(layers)):
            x_ctr = tf.contrib.layers.fully_connected(inputs=x_ctr, num_outputs=layers[i], \
                weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='ctr_mlp%d' % i)

            if FLAGS.batch_norm:
                x_ctr = batch_norm_layer(x_ctr, train_phase=train_phase, scope_bn='ctr_bn_%d' %i)       #放在RELU之后 https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
            if mode == tf.estimator.ModeKeys.TRAIN:
                x_ctr = tf.nn.dropout(x_ctr, keep_prob=dropout[i])                                  #Apply Dropout after all BN layers and set dropout=0.8(drop_ratio=0.2)

        y_ctr = tf.contrib.layers.fully_connected(inputs=x_ctr, num_outputs=1, activation_fn=tf.identity, \
            weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='ctr_out')
        y_ctr = tf.reshape(y_ctr,shape=[-1])

    with tf.variable_scope("MTL-Layer"):
        pctr = tf.sigmoid(y_ctr)
        pcvr = tf.sigmoid(y_cvr)
        pctcvr = pctr*pcvr

    predictions={"pcvr": pcvr, "pctr": pctr, "pctcvr": pctcvr}
    export_outputs = {tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.PredictOutput(predictions)}
    # Provide an estimator spec for `ModeKeys.PREDICT`
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(
                mode=mode,
                predictions=predictions,
                export_outputs=export_outputs)

    if FLAGS.task_type != "infer":
        #------bulid loss------
        ctr_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y_ctr, labels=y))
        #cvr_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y_ctcvr, labels=z))
        cvr_loss = tf.reduce_mean(tf.losses.log_loss(predictions=pctcvr, labels=z))
        loss = ctr_task_wgt * ctr_loss + (1  -ctr_task_wgt) * cvr_loss + l2_reg * tf.nn.l2_loss(Feat_Emb)

        tf.summary.scalar('ctr_loss', ctr_loss)
        tf.summary.scalar('cvr_loss', cvr_loss)

        # Provide an estimator spec for `ModeKeys.EVAL`
        eval_metric_ops = {
            "CTR_AUC": tf.metrics.auc(y, pctr),
            #"CTR_F1": tf.contrib.metrics.f1_score(y,pctr),
            #"CTR_Precision": tf.metrics.precision(y,pctr),
            #"CTR_Recall": tf.metrics.recall(y,pctr),
            "CVR_AUC": tf.metrics.auc(z, pcvr),
            "CTCVR_AUC": tf.metrics.auc(z, pctcvr)
        }
        if mode == tf.estimator.ModeKeys.EVAL:
            return tf.estimator.EstimatorSpec(
                    mode=mode,
                    predictions=predictions,
                    loss=loss,
                    eval_metric_ops=eval_metric_ops)

        #------bulid optimizer------
        if FLAGS.optimizer == 'Adam':
            optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8)
        elif FLAGS.optimizer == 'Adagrad':
            optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate, initial_accumulator_value=1e-8)
        elif FLAGS.optimizer == 'Momentum':
            optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.95)
        elif FLAGS.optimizer == 'ftrl':
            optimizer = tf.train.FtrlOptimizer(learning_rate)

        train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())

        # Provide an estimator spec for `ModeKeys.TRAIN` modes
        if mode == tf.estimator.ModeKeys.TRAIN:
            return tf.estimator.EstimatorSpec(
                    mode=mode,
                    predictions=predictions,
                    loss=loss,
                    train_op=train_op)

def batch_norm_layer(x, train_phase, scope_bn):
    bn_train = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=True,  reuse=None, scope=scope_bn)
    bn_infer = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=False, reuse=True, scope=scope_bn)
    z = tf.cond(tf.cast(train_phase, tf.bool), lambda: bn_train, lambda: bn_infer)
    return z

def set_dist_env():
    if FLAGS.dist_mode == 1:        # 本地分布式测试模式1 chief, 1 ps, 1 evaluator
        ps_hosts = FLAGS.ps_hosts.split(',')
        chief_hosts = FLAGS.chief_hosts.split(',')
        task_index = FLAGS.task_index
        job_name = FLAGS.job_name
        print('ps_host', ps_hosts)
        print('chief_hosts', chief_hosts)
        print('job_name', job_name)
        print('task_index', str(task_index))
        # 无worker参数
        tf_config = {
            'cluster': {'chief': chief_hosts, 'ps': ps_hosts},
            'task': {'type': job_name, 'index': task_index }
        }
        print(json.dumps(tf_config))
        os.environ['TF_CONFIG'] = json.dumps(tf_config)
    elif FLAGS.dist_mode == 2:      # 集群分布式模式
        ps_hosts = FLAGS.ps_hosts.split(',')
        worker_hosts = FLAGS.worker_hosts.split(',')
        chief_hosts = worker_hosts[0:1] # get first worker as chief
        worker_hosts = worker_hosts[2:] # the rest as worker
        task_index = FLAGS.task_index
        job_name = FLAGS.job_name
        print('ps_host', ps_hosts)
        print('worker_host', worker_hosts)
        print('chief_hosts', chief_hosts)
        print('job_name', job_name)
        print('task_index', str(task_index))
        # use #worker=0 as chief
        if job_name == "worker" and task_index == 0:
            job_name = "chief"
        # use #worker=1 as evaluator
        if job_name == "worker" and task_index == 1:
            job_name = 'evaluator'
            task_index = 0
        # the others as worker
        if job_name == "worker" and task_index > 1:
            task_index -= 2

        tf_config = {
            'cluster': {'chief': chief_hosts, 'worker': worker_hosts, 'ps': ps_hosts},
            'task': {'type': job_name, 'index': task_index }
        }
        print(json.dumps(tf_config))
        os.environ['TF_CONFIG'] = json.dumps(tf_config)

def main(_):
    #------check Arguments------
    if FLAGS.dt_dir == "":
        FLAGS.dt_dir = (date.today() + timedelta(-1)).strftime('%Y%m%d')
    FLAGS.model_dir = FLAGS.model_dir + FLAGS.dt_dir
    #FLAGS.data_dir  = FLAGS.data_dir + FLAGS.dt_dir

张彦钊's avatar
张彦钊 committed
323
    tr_files = ["hdfs://172.16.32.4:8020/strategy/esmm/tr/part-r-00000"]
张彦钊's avatar
张彦钊 committed
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    va_files = ["hdfs://172.16.32.4:8020/strategy/esmm/va/part-r-00000"]
    te_files = ["%s/part-r-00000" % FLAGS.hdfs_dir]

    if FLAGS.clear_existing_model:
        try:
            shutil.rmtree(FLAGS.model_dir)
        except Exception as e:
            print(e, "at clear_existing_model")
        else:
            print("existing model cleaned at %s" % FLAGS.model_dir)

    set_dist_env()

    #------bulid Tasks------
    model_params = {
        "field_size": FLAGS.field_size,
        "feature_size": FLAGS.feature_size,
        "embedding_size": FLAGS.embedding_size,
        "learning_rate": FLAGS.learning_rate,
        "l2_reg": FLAGS.l2_reg,
        "deep_layers": FLAGS.deep_layers,
        "dropout": FLAGS.dropout,
        "ctr_task_wgt":FLAGS.ctr_task_wgt
    }
    config = tf.estimator.RunConfig().replace(session_config = tf.ConfigProto(device_count={'GPU':0, 'CPU':FLAGS.num_threads}),
            log_step_count_steps=FLAGS.log_steps, save_summary_steps=FLAGS.log_steps)
    Estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir=FLAGS.model_dir, params=model_params, config=config)

    if FLAGS.task_type == 'train':
        train_spec = tf.estimator.TrainSpec(input_fn=lambda: input_fn(tr_files, num_epochs=FLAGS.num_epochs, batch_size=FLAGS.batch_size))
        eval_spec = tf.estimator.EvalSpec(input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size), steps=None, start_delay_secs=1000, throttle_secs=1200)
        result = tf.estimator.train_and_evaluate(Estimator, train_spec, eval_spec)
        for key,value in sorted(result[0].items()):
            print('%s: %s' % (key,value))
    elif FLAGS.task_type == 'eval':
        result = Estimator.evaluate(input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size))
        for key,value in sorted(result.items()):
            print('%s: %s' % (key,value))
    elif FLAGS.task_type == 'infer':
        preds = Estimator.predict(input_fn=lambda: input_fn(te_files, num_epochs=1, batch_size=FLAGS.batch_size), predict_keys=["pctcvr","pctr","pcvr"])
        with open(FLAGS.local_dir + "/pred.txt", "w") as fo:
            for prob in preds:
                fo.write("%f\t%f\t%f\n" % (prob['pctr'], prob['pcvr'], prob['pctcvr']))
    elif FLAGS.task_type == 'export':
        print("Not Implemented, Do It Yourself!")


if __name__ == "__main__":
    b = time.time()
    path = "hdfs://172.16.32.4:8020/strategy/esmm/"
    tf.logging.set_verbosity(tf.logging.INFO)
    tf.app.run()
    print("耗时(分钟):")
    print((time.time()-b)/60)