temp_count.scala 39.5 KB
Newer Older
1 2 3
package com.gmei

import java.io.Serializable
4
import java.text.SimpleDateFormat
5

王志伟's avatar
王志伟 committed
6
import breeze.linalg.split
7
import com.gmei.WeafareStat.{defaultParams, parser}
王志伟's avatar
王志伟 committed
8
import org.apache.spark.sql.{Row, SaveMode, SparkSession, TiContext}
9 10 11
import org.apache.log4j.{Level, Logger}
import scopt.OptionParser
import com.gmei.lib.AbstractParams
12 13 14
import com.github.nscala_time.time.Imports._
import java.text.SimpleDateFormat
import java.util.Date
15

王志伟's avatar
王志伟 committed
16 17
import scala.util.parsing.json.JSON

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
object temp_count {

  Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
  Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)

  case class Params(env: String = "dev",
                    date: String = "2018-08-01"
                   ) extends AbstractParams[Params] with Serializable

  val defaultParams = Params()

  val parser = new OptionParser[Params]("Feed_EDA") {
    head("WeafareStat")
    opt[String]("env")
      .text(s"the databases environment you used")
      .action((x, c) => c.copy(env = x))
    opt[String] ("date")
      .text(s"the date you used")
      .action((x,c) => c.copy(date = x))
    note(
      """
        |For example, the following command runs this app on a tidb dataset:
        |
        | spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
      """.stripMargin +
        s"|   --env ${defaultParams.env}"
    )
  }

  def main(args: Array[String]): Unit = {
    parser.parse(args, defaultParams).map { param =>
      GmeiConfig.setup(param.env)
      val spark_env = GmeiConfig.getSparkSession()
      val sc = spark_env._2

      val ti = new TiContext(sc)
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "diary_video")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")


61 62
      val stat_date = GmeiConfig.getMinusNDate(1)
//      val stat_date = param.date
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
      //println(param.date)
      val partition_date = stat_date.replace("-","")
      val decive_id_oldUser = sc.sql(
        s"""
           |select distinct(device_id) as device_id
           |from online.ml_device_day_active_status
           |where active_type = '4'
           |and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
           |    ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
           |    ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
           |    ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
           |    ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
           |    ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
           |    ,'promotion_shike','promotion_julang_jl03','','unknown')
           |and partition_date ='${partition_date}'
         """.stripMargin
      )
      decive_id_oldUser.createOrReplaceTempView("device_id_old")


      val clk_count_oldUser = sc.sql(
        s"""
85
           |select '${stat_date}' as stat_date, count(jd.cid_id) as clk_count_oldUser
86 87 88 89 90 91 92 93 94 95 96
           |from data_feed_click jd inner join device_id_old
           |on jd.device_id = device_id_old.device_id
           |where  (jd.cid_type = 'diary' or jd.cid_type = 'diary_video')
           |and jd.device_id not in (select device_id from blacklist)
           |and jd.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
           |and jd.stat_date ='${stat_date}'
         """.stripMargin
      )

      val imp_count_oldUser = sc.sql(
        s"""
97
           |select '${stat_date}' as stat_date, count(cid_id) as imp_count_oldUser
98 99 100 101 102 103 104 105 106 107 108
           |from data_feed_exposure je inner join device_id_old
           |on je.device_id = device_id_old.device_id
           |where je.cid_type = 'diary'
           |and je.device_id not in (select device_id from blacklist)
           |and je.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
           |and je.stat_date ='${stat_date}'
         """.stripMargin
      )

      val clk_count_all = sc.sql(
        s"""
109
           |select '${stat_date}' as stat_date, count(cid_id) as clk_count_all
110
           |from data_feed_click
111
           |where  (cid_type = 'diary' or cid_type = 'diary_video')
112 113 114 115 116 117 118 119
           |and device_id not in (select device_id from blacklist)
           |and city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
           |and stat_date ='${stat_date}'
         """.stripMargin
      )

      val imp_count__all = sc.sql(
        s"""
120
           |select '${stat_date}' as stat_date, count(cid_id) as imp_count_all
121 122 123 124 125 126 127 128
           |from data_feed_exposure
           |where cid_type = 'diary'
           |and device_id not in (select device_id from blacklist)
           |and city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
           |and stat_date ='${stat_date}'
         """.stripMargin
      )

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
      val clk_count_oldUser_Contrast = sc.sql(
        s"""
           |select '${stat_date}' as stat_date, count(cid_id) as clk_count_oldUser_Contrast
           |from data_feed_click jd inner join device_id_old
           |on jd.device_id = device_id_old.device_id
           |where  (jd.cid_type = 'diary' or jd.cid_type = 'diary_video')
           |and jd.device_id regexp'1$$'
           |and jd.device_id not in (select device_id from blacklist)
           |and jd.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
           |and jd.stat_date ='${stat_date}'
         """.stripMargin
      )

      val imp_count_oldUser_Contrast = sc.sql(
        s"""
           |select '${stat_date}' as stat_date, count(cid_id) as imp_count_oldUser_Contrast
           |from data_feed_exposure je inner join device_id_old
           |on je.device_id = device_id_old.device_id
           |where je.cid_type = 'diary'
           |and je.device_id regexp'1$$'
           |and je.device_id not in (select device_id from blacklist)
           |and je.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
           |and je.stat_date ='${stat_date}'
         """.stripMargin
      )



157 158 159 160

      val result1 = clk_count_oldUser.join(imp_count_oldUser,"stat_date")
        .join(clk_count_all,"stat_date")
        .join(imp_count__all,"stat_date")
161 162
        .join(clk_count_oldUser_Contrast,"stat_date")
        .join(imp_count_oldUser_Contrast,"stat_date")
163 164 165 166 167 168 169 170 171 172
      result1.show()

      GmeiConfig.writeToJDBCTable(result1, "ffm_diary_ctr", SaveMode.Append)


    }


  }

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
}




object Repeated_content_recommendation {

  Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
  Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)

  case class Params(env: String = "dev",
                    date: String = "2018-08-01"
                   ) extends AbstractParams[Params] with Serializable

  val defaultParams = Params()

  val parser = new OptionParser[Params]("Feed_EDA") {
    head("WeafareStat")
    opt[String]("env")
      .text(s"the databases environment you used")
      .action((x, c) => c.copy(env = x))
    opt[String] ("date")
      .text(s"the date you used")
      .action((x,c) => c.copy(date = x))
    note(
      """
        |For example, the following command runs this app on a tidb dataset:
        |
        | spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
      """.stripMargin +
        s"|   --env ${defaultParams.env}"
    )
  }

  def main(args: Array[String]): Unit = {
    parser.parse(args, defaultParams).map { param =>
      GmeiConfig.setup(param.env)
      val spark_env = GmeiConfig.getSparkSession()
      val sc = spark_env._2

      val ti = new TiContext(sc)
214
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
215 216 217 218 219 220
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")


221 222
//      val stat_date = GmeiConfig.getMinusNDate(1)
      val stat_date = param.date
223 224 225
      val partition_date = stat_date.replace("-","")


226 227

      val agency_id = sc.sql(
228
        s"""
229 230 231 232 233 234 235 236 237 238 239 240 241 242
           |SELECT DISTINCT(cl_id) as device_id
           |FROM online.ml_hospital_spam_pv_day
           |WHERE partition_date >= '20180402'
           |AND partition_date <= '${partition_date}'
           |AND pv_ratio >= 0.95
           |UNION ALL
           |SELECT DISTINCT(cl_id) as device_id
           |FROM online.ml_hospital_spam_pv_month
           |WHERE partition_date >= '20171101'
           |AND partition_date <= '${partition_date}'
           |AND pv_ratio >= 0.95
           |UNION ALL
           |select distinct(device_id)
           |from blacklist
243 244
         """.stripMargin
      )
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
      agency_id.createOrReplaceTempView("agency_id")



      val device_id_oldUser = sc.sql(
        s"""
           |select distinct(om.device_id) as device_id
           |from online.ml_device_day_active_status om left join agency_id
           |on om.device_id = agency_id.device_id
           |where om.active_type = '4'
           |and om.first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
           |    ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
           |    ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
           |    ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
           |    ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
           |    ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
           |    ,'promotion_shike','promotion_julang_jl03','','unknown')
           |and om.partition_date ='${partition_date}'
           |and agency_id.device_id is null
         """.stripMargin
      )
      device_id_oldUser.createOrReplaceTempView("device_id_old")
267
      device_id_oldUser.show()
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287


      val device_id_newUser = sc.sql(
        s"""
           |select distinct(om.device_id) as device_id
           |from online.ml_device_day_active_status om left join agency_id
           |on om.device_id = agency_id.device_id
           |where om.active_type != '4'
           |and om.first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
           |    ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
           |    ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
           |    ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
           |    ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
           |    ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
           |    ,'promotion_shike','promotion_julang_jl03','','unknown')
           |and om.partition_date ='${partition_date}'
           |and agency_id.device_id is null
         """.stripMargin
      )
      device_id_newUser.createOrReplaceTempView("device_id_new")
288
      device_id_newUser.show()
289 290 291 292 293 294 295 296 297 298 299 300 301



      val exp_diary_new = sc.sql(
        s"""
           |select concat_ws('|',de.device_id,de.cid_id)
           |from data_feed_exposure  de inner join device_id_new
           |on de.device_id=device_id_new.device_id
           |where de.cid_type = 'diary'
           |and de.stat_date ='${stat_date}'
         """.stripMargin
      )
      val get_result_new =exp_diary_new.rdd.map((_, 1)).reduceByKey(_ + _)
302 303
              .sortBy(_._2,false)

304 305 306 307 308 309
      val more_than2_new=get_result_new.filter(_._2 >=2).map(_._2).reduce((x,y)=>x+y)
      println(more_than2_new)
      val all_new =get_result_new.map(_._2).reduce((x,y)=>x+y)
      println(all_new)
      val repeated_rate_new= more_than2_new / all_new.toDouble
      println(repeated_rate_new)
310 311


312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
      val exp_diary_old = sc.sql(
        s"""
           |select concat_ws('|',de.device_id,de.cid_id)
           |from data_feed_exposure de inner join device_id_old
           |on de.device_id=device_id_old.device_id
           |where de.cid_type = 'diary'
           |and de.stat_date ='${stat_date}'
               """.stripMargin
      )
      val get_result_old =exp_diary_old.rdd.map((_, 1)).reduceByKey(_ + _)
        .sortBy(_._2,false)

      val more_than2_old=get_result_old.filter(_._2 >=2).map(_._2).reduce((x,y)=>x+y)
      println(more_than2_old)
      val all_old =get_result_old.map(_._2).reduce((x,y)=>x+y)
      println(all_old)
      val repeated_rate_old= more_than2_old / all_old.toDouble
      println(repeated_rate_old)


      val result2=List((stat_date,more_than2_old,all_old,more_than2_new,all_new))
      val df2 = sc.createDataFrame(result2).toDF("stat_date","old_rep_count","old_imp_all","new_rep_count","new_imp_all")

      GmeiConfig.writeToJDBCTable(df2, table = "Repeated_evaluation_indicator", SaveMode.Append)
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
//      val exp_diary_old = sc.sql(
//        s"""
//           |select concat_ws('|',de.device_id,de.cid_id)
//           |from data_feed_exposure de inner join device_id_old
//           |where de.cid_type = 'diary'
//           |and de.stat_date ='${stat_date}'
//         """.stripMargin
//      )
//      val get_result_old =exp_diary_old.rdd.map((_, 1)).reduceByKey(_ + _)
//        .sortBy(_._2,false)
//
//      val more_than2_old=get_result_old.filter(_._2 >=2).map(_._2).reduce((x,y)=>x+y)
//      println(more_than2_old)
//      val all_old =get_result_old.map(_._2).reduce((x,y)=>x+y)
//      println(all_old)
//      val repeated_rate_old= more_than2_old / all_old.toDouble
//      println(repeated_rate_old)
//
//
//      val result2=List((stat_date,more_than2_old,all_old))
//      val df2 = sc.createDataFrame(result2).toDF("stat_date","old_rep_count","old_imp_all")
//
//      GmeiConfig.writeToJDBCTable(df2, table = "Repeated_evaluation_indicator_old", SaveMode.Append)
360 361


362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
//      val temp=get_result.collect()
//            for (i <- 0 until 30 ) {
//              println(temp(i))
//            }
    }


  }

}


object Repeated_content_recommendation_moreday {

  Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
  Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)

  case class Params(env: String = "dev",
                    date: String = "2018-08-01"
                   ) extends AbstractParams[Params] with Serializable

  val defaultParams = Params()

  val parser = new OptionParser[Params]("Feed_EDA") {
    head("WeafareStat")
    opt[String]("env")
      .text(s"the databases environment you used")
      .action((x, c) => c.copy(env = x))
    opt[String] ("date")
      .text(s"the date you used")
      .action((x,c) => c.copy(date = x))
    note(
      """
        |For example, the following command runs this app on a tidb dataset:
        |
        | spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
      """.stripMargin +
        s"|   --env ${defaultParams.env}"
    )
  }

  def main(args: Array[String]): Unit = {
    parser.parse(args, defaultParams).map { param =>
      GmeiConfig.setup(param.env)
      val spark_env = GmeiConfig.getSparkSession()
      val sc = spark_env._2

      val ti = new TiContext(sc)
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")


417
//      val stat_date = GmeiConfig.getMinusNDate(1)
418
//      val stat_date = "2019-01-16"
419 420 421
//      val partition_date = stat_date.replace("-","")


422
      val now= new Date()
423 424
//      val stat_date=param.date

425
      val dateFormat = new SimpleDateFormat("yyyy-MM-dd")
王志伟's avatar
王志伟 committed
426
      val date = dateFormat.format(now.getTime - 86400000L * 8)
427
      val yesterday=dateFormat.format(now.getTime- 86400000L)
428 429 430 431


      val exp_diary = sc.sql(
        s"""
432
           |select stat_date,device_id,concat_ws(',',collect_set(distinct cid_id)) as expoure_diary
433
           |from data_feed_exposure_precise
434
           |where cid_type = 'diary'
435
           |and stat_date >='${date}'
436
           |and device_id not in (select device_id from blacklist)
437
           |group by device_id,stat_date
438
         """.stripMargin
439 440
      ).rdd.map(row=>(row(0).toString,row(1).toString,row(2).toString)).map(row=>(row._2,row._3)).groupByKey()
        .filter(x => x._2.size >1)
王志伟's avatar
王志伟 committed
441 442

      //打印结果
王志伟's avatar
王志伟 committed
443
//      val temp=exp_diary.take(10).foreach(println)
王志伟's avatar
王志伟 committed
444

445 446 447
//      val count_imp=exp_diary.map(_._2).map(row=>row.flatMap(x=>x.split(",")).toArray)
//        .map(x => (x,x)).map(x => (x._1.distinct.size,x._2.size)).map(x => (x._2-x._1,x._2))

王志伟's avatar
王志伟 committed
448
      //统计每个用户重复日记个数
449 450 451 452 453 454
      val count_imp=exp_diary.map(_._2).map(row=>row.flatMap(x=>x.split(",")).toArray)
        .map(x => (x,x)).map(x => (x._1.distinct.size,x._2.size)).map(x => (x._2-x._1,x._2)).collect()
      val fenmu = count_imp.map(x => x._1).reduce((x,y) => x+y)
      val fenzi =   count_imp.map(x => x._2).reduce((x,y) => x+y)

      val repeated_rate= fenmu / fenzi.toDouble
455
      val result=List((yesterday,repeated_rate))
王志伟's avatar
王志伟 committed
456
      println(result)
457 458 459
      val df_result = sc.createDataFrame(result)

      GmeiConfig.writeToJDBCTable(df_result, table = "Repeated_content_recommendation_moreday", SaveMode.Append)
王志伟's avatar
王志伟 committed
460

461 462
//      exp_diary.show()
//      exp_diary.createOrReplaceTempView("exp_diary")
463
//      GmeiConfig.writeToJDBCTable(df, table = "Repeated_evaluation_indicator_moreday", SaveMode.Append)
464

465 466
    }
  }
王志伟's avatar
王志伟 committed
467 468 469 470 471
}




472

王志伟's avatar
王志伟 committed
473 474 475 476 477 478 479 480 481
object GetHiveSearchData {

  Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
  Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)

  case class Params(env: String = "dev",
                    date: String = "2018-08-01"
                   ) extends AbstractParams[Params] with Serializable

482 483
  case class GetHiveSearchData_temp(stat_date:String,diaryExposureVal:String,diaryClickNum:String,meigouExposureVal:String,meigouClickNum:String,searchResultExposureVal:String,searchResultClickNum:String,searchDoctorExposureVal:String,searchDoctorClickNum:String,searchHospitalExposureVal:String,searchHospitalClickNum:String)

王志伟's avatar
王志伟 committed
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  val defaultParams = Params()

  val parser = new OptionParser[Params]("Feed_EDA") {
    head("WeafareStat")
    opt[String]("env")
      .text(s"the databases environment you used")
      .action((x, c) => c.copy(env = x))
    opt[String] ("date")
      .text(s"the date you used")
      .action((x,c) => c.copy(date = x))
    note(
      """
        |For example, the following command runs this app on a tidb dataset:
        |
        | spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
      """.stripMargin +
        s"|   --env ${defaultParams.env}"
    )
  }

  def main(args: Array[String]): Unit = {
    parser.parse(args, defaultParams).map { param =>
      GmeiConfig.setup(param.env)
      val spark_env = GmeiConfig.getSparkSession()
      val sc = spark_env._2

      val ti = new TiContext(sc)
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
512
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "GetHiveSearchData_CTR")
王志伟's avatar
王志伟 committed
513 514 515 516 517
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")


王志伟's avatar
王志伟 committed
518 519
      val stat_date = GmeiConfig.getMinusNDate(1)
//      val stat_date = param.date
王志伟's avatar
王志伟 committed
520 521 522 523 524
      val partition_date = stat_date.replace("-","")


      val strDiaryExposureAction = "/api/search/v2/diary"
      val strDiaryClickAction = "search_result_more_diary_click_item"    //需要确认
525
      var (diaryExposureVal,diaryClickNum,diaryExposureMapCount,diaryExposureFilterCount) = GetSearchResultData(sc,strDiaryExposureAction,strDiaryClickAction,stat_date)
王志伟's avatar
王志伟 committed
526 527 528 529


      val strMeigouExposureAction = "/api/search/v2/service"
      val strMeigouClickAction = "search_result_welfare_click_item"
530
      var (meigouExposureVal,meigouClickNum,meigouExposureMapCount,meigouExposureFilterCount) = GetSearchResultData(sc,strMeigouExposureAction,strMeigouClickAction,stat_date)
王志伟's avatar
王志伟 committed
531 532 533 534


      val strSearchResultExposureAction = "/api/search/v2/content"
      val strSearchResultClickAction = "search_result_click_diary_item"  //需要确认
535
      var (searchResultExposureVal,searchResultClickNum,searchResultExposureMapCount,searchResultExposureFilterCount) = GetSearchResultData(sc,strSearchResultExposureAction,strSearchResultClickAction,stat_date)
王志伟's avatar
王志伟 committed
536 537 538 539


      val strSearchDoctorExposureAction = "/api/search/v2/doctor"
      val strSearchDoctorClickAction = "search_result_doctor_click_item"
540
      var (searchDoctorExposureVal,searchDoctorClickNum,searchDoctorExposureMapCount,searchDoctorExposureFilterCount) = GetSearchResultData(sc,strSearchDoctorExposureAction,strSearchDoctorClickAction,stat_date)
王志伟's avatar
王志伟 committed
541 542 543 544


      val strSearchHospitalExposureAction = "/api/search/v2/hospital"
      val strSearchHospitalClickAction = "search_result_hospital_click_item"
545
      var (searchHospitalExposureVal,searchHospitalClickNum,searchHospitalExposureMapCount,searchHospitalExposureFilterCount) = GetSearchResultData(sc,strSearchHospitalExposureAction,strSearchHospitalClickAction,stat_date)
王志伟's avatar
王志伟 committed
546 547


548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

      val jigou_id = sc.sql(
        s"""
           |SELECT cl_id
           |FROM online.ml_hospital_spam_pv_day
           |WHERE partition_date>='20180402' AND partition_date<'${partition_date}'
           |AND pv_ratio>=0.95
           |UNION ALL
           |SELECT cl_id
           |FROM online.ml_hospital_spam_pv_month
           |WHERE partition_date>='20171101' AND partition_date<'${partition_date}'
           |AND pv_ratio>=0.95
           |UNION ALL
           |select device_id as cl_id from blacklist
       """.stripMargin
      )
      jigou_id.createOrReplaceTempView("jigou_id")


王志伟's avatar
王志伟 committed
567 568 569 570
      val diary_clickSql = sc.sql(
        s"""
           |select
           |count(1) click_num
571 572 573 574 575 576
           |from  online.tl_hdfs_maidian_view ov left join jigou_id
           |on ov.cl_id = jigou_id.cl_id
           |where ov.partition_date='${partition_date}'
           |and ov.action='on_click_diary_card'
           |and ov.params['page_name']='search_result_diary'
           |and jigou_id.cl_id is null
王志伟's avatar
王志伟 committed
577 578 579 580 581 582 583 584 585 586
       """.stripMargin
      )

      val diary_clickArray = diary_clickSql.collect()
      val diary_click_num = diary_clickArray(0).getAs[Long]("click_num")

      val content_diary_clickSql = sc.sql(
        s"""
           |select
           |count(1) click_num
587 588 589 590 591 592
           |from  online.tl_hdfs_maidian_view ov left join jigou_id
           |on ov.cl_id = jigou_id.cl_id
           |where ov.partition_date='${partition_date}'
           |and ov.action='on_click_diary_card'
           |and  ov.params['page_name']='search_result_more'
           |and jigou_id.cl_id is null
王志伟's avatar
王志伟 committed
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
       """.stripMargin
      )

      val content_diary_clickArray:Array[Row] = content_diary_clickSql.collect()
      val content_diary_click_num:Long = content_diary_clickArray(0).getAs[Long]("click_num")




      println("searchDiaryExposureVal:" + diaryExposureVal + "\tsearchDiaryClickNum:" + diary_click_num + "\tclickRate:" + (diary_click_num.floatValue()/diaryExposureVal.floatValue()).formatted("%.2f"))
      println("searchMeigouExposureVal:" + meigouExposureVal + "\tsearchMeigouClickNum:" + meigouClickNum + "\tclickRate:" + (meigouClickNum.floatValue()/meigouExposureVal.floatValue()).formatted("%.2f"))
      println("searchResultExposureVal:" + searchResultExposureVal + "\tsearchResultClickNum:" + (searchResultClickNum+content_diary_click_num) + "\tclickRate:" + ((searchResultClickNum+content_diary_click_num).floatValue()/searchResultExposureVal.floatValue()).formatted("%.2f"))
      println("searchDoctorExposureVal:" + searchDoctorExposureVal + "\tsearchDoctorClickNum:" + searchDoctorClickNum + "\tclickRate:" + (searchDoctorClickNum.floatValue()/searchDoctorExposureVal.floatValue()).formatted("%.2f"))
      println("searchHospitalExposureVal:" + searchHospitalExposureVal + "\tsearchHospitalClickNum:" + searchHospitalClickNum + "\tclickRate:" + (searchHospitalClickNum.floatValue()/searchHospitalExposureVal.floatValue()).formatted("%.2f"))

608 609


610 611 612 613 614 615
//      val add_data = sc.sql(
//        s"""
//           |insert into table GetHiveSearchData_CTR(stat_date,diaryExposureVal,diaryClickNum,meigouExposureVal,meigouClickNum,searchResultExposureVal,searchResultClickNum,searchDoctorExposureVal,searchDoctorClickNum,searchHospitalExposureVal,searchHospitalClickNum)
//           |values ('${stat_date}','${diaryExposureVal}','${(diary_click_num+diaryClickNum)}','${meigouExposureVal}','${meigouClickNum}','${searchResultExposureVal}','${(searchResultClickNum+content_diary_click_num)}','${searchDoctorExposureVal}','${searchDoctorClickNum}','${searchHospitalExposureVal}','${searchHospitalClickNum}')
//       """.stripMargin
//      )
616

617

618 619
      import sc.implicits._
      val result=List((stat_date,diaryExposureVal,(diary_click_num+diaryClickNum),meigouExposureVal,meigouClickNum,searchResultExposureVal,(searchResultClickNum+content_diary_click_num),searchDoctorExposureVal,searchDoctorClickNum,searchHospitalExposureVal,searchHospitalClickNum))
620
//      val df_result = sc.createDataFrame(result).map(x=>GetHiveSearchData_temp(x(0).toString,x(1).toString,x(2).toString,x(3).toString,x(4).toString,x(5).toString,x(6).toString,x(7).toString,x(8).toString,x(9).toString,x(10).toString)).toDF()
621 622 623 624 625
      val df_result = sc.sparkContext.parallelize(result).map(x=>(x._1,x._2,x._3,x._4,x._5,x._6,x._7,x._8,x._9,x._10,x._11)).toDF("stat_date","diaryExposureVal","diaryClickNum","meigouExposureVal","meigouClickNum","searchResultExposureVal","searchResultClickNum","searchDoctorExposureVal",
      "searchDoctorClickNum","searchHospitalExposureVal","searchHospitalClickNum")

//
      GmeiConfig.writeToJDBCTable(df_result, table = "GetHiveSearchData_CTR", SaveMode.Append)
626

王志伟's avatar
王志伟 committed
627 628 629
    }


630
    def GetSearchResultData(spark: SparkSession, strExposureAction:String, strClickAction:String,stat_date:String) = {
631

王志伟's avatar
王志伟 committed
632 633
      val partition_date = stat_date.replace("-","")

王志伟's avatar
王志伟 committed
634
      val exposureAccum = spark.sparkContext.longAccumulator("search exposure data")
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

      val jigou_id = spark.sql(
        s"""
           |SELECT cl_id
           |FROM online.ml_hospital_spam_pv_day
           |WHERE partition_date>='20180402' AND partition_date<'${partition_date}'
           |AND pv_ratio>=0.95
           |UNION ALL
           |SELECT cl_id
           |FROM online.ml_hospital_spam_pv_month
           |WHERE partition_date>='20171101' AND partition_date<'${partition_date}'
           |AND pv_ratio>=0.95
           |UNION ALL
           |select device_id as cl_id from blacklist
       """.stripMargin
      )
      jigou_id.createOrReplaceTempView("jigou_id")

王志伟's avatar
王志伟 committed
653 654
      val exposureSql = spark.sql(
        s"""
655 656 657 658 659 660
           |select action,user_id,city_id,app
           |from online.tl_hdfs_backend_view ov left join jigou_id
           |on ov.cl_id = jigou_id.cl_id
           |where  ov.action='$strExposureAction'
           |and ov.partition_date='${partition_date}'
           |and jigou_id.cl_id is null
王志伟's avatar
王志伟 committed
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
    """.stripMargin
      )

      val exposureMapResult = exposureSql.rdd.map(row => {


        //val jsonObj = JSON.parseFull(row.getAs[Map[String,Any]]("app").toString())

        val rowAppFieldMap:Map[String,Any] = row.getAs[Map[String,Any]]("app")

        if (rowAppFieldMap.nonEmpty)
        {
          // jsonMap:Map[String,Any] = jsonObj.get.asInstanceOf[Map[String,Any]]

          if (rowAppFieldMap.contains("exposure_data")){

            val exposure_data_lists:List[Any] = JSON.parseFull(rowAppFieldMap("exposure_data").toString).get.asInstanceOf[List[Any]]

            if (exposure_data_lists.length > 0){

              exposure_data_lists.foreach(exposure_item=>{


                if (exposure_item!=None && exposure_item.toString.nonEmpty){
                  val exposureItemMap:Map[String,Any] = exposure_item.asInstanceOf[Map[String,Any]]

                  if (exposureItemMap.contains("list_ids")){
                    //val exposure_list_ids:List[Any] = exposureItemMap.get("list_ids").get.asInstanceOf[List[Any]]
                    val exposure_list_ids:List[Any] = exposureItemMap("list_ids").asInstanceOf[List[Any]]

                    exposureAccum.add(exposure_list_ids.length)
                  }
                }else{
                  None
                }
              })

              exposure_data_lists
            }else{
              None
            }

          }
        }else{
          None
        }

      })

      //must add cache
      exposureMapResult.cache()
      val exposureFilterResult = exposureMapResult.filter(_.!=(None))
      //val exposureArray:Array[Any] = exposureFilterResult.collect()
      //exposureArray.foreach(item => println(item.toString))

      val exposureMapCount:Long = exposureMapResult.count()
      val exposureFilterCount:Long = exposureFilterResult.count()

      val clickSql = spark.sql(
        s"""
           |select
           |count(1) click_num
723 724 725 726
           |from  online.tl_hdfs_maidian_view  ov left join jigou_id
           |on ov.cl_id = jigou_id.cl_id
           |where ov.partition_date='${partition_date}'
           |and ov.action='$strClickAction'
727
           |and jigou_id.cl_id is null
王志伟's avatar
王志伟 committed
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
     """.stripMargin
      )

      val clickArray:Array[Row] = clickSql.collect()
      val click_num:Long = clickArray(0).getAs[Long]("click_num")


      (exposureAccum.value,click_num,exposureMapCount,exposureFilterCount)



    }

//      GmeiConfig.writeToJDBCTable(df_result, table = "Repeated_content_recommendation_moreday", SaveMode.Append)

      //      exp_diary.show()
      //      exp_diary.createOrReplaceTempView("exp_diary")
      //      GmeiConfig.writeToJDBCTable(df, table = "Repeated_evaluation_indicator_moreday", SaveMode.Append)

    }


  }

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793



object find_reason {

  Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
  Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)

  case class Params(env: String = "dev",
                    date: String = "2018-08-01"
                   ) extends AbstractParams[Params] with Serializable

  val defaultParams = Params()

  val parser = new OptionParser[Params]("Feed_EDA") {
    head("WeafareStat")
    opt[String]("env")
      .text(s"the databases environment you used")
      .action((x, c) => c.copy(env = x))
    opt[String] ("date")
      .text(s"the date you used")
      .action((x,c) => c.copy(date = x))
    note(
      """
        |For example, the following command runs this app on a tidb dataset:
        |
        | spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
      """.stripMargin +
        s"|   --env ${defaultParams.env}"
    )
  }

  def main(args: Array[String]): Unit = {
    parser.parse(args, defaultParams).map { param =>
      GmeiConfig.setup(param.env)
      val spark_env = GmeiConfig.getSparkSession()
      val sc = spark_env._2

      val ti = new TiContext(sc)
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "diary_video")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
794
      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
795

796 797
//      val stat_date = GmeiConfig.getMinusNDate(1)
      val stat_date=param.date
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
      val partition_date = stat_date.replace("-","")
      //机构id
      val blacklist = sc.sql(
        s"""
           |select device_id from blacklist
         """.stripMargin
      )
      blacklist.createOrReplaceTempView("blacklist")

      val agency_id = sc.sql(
        s"""
           |SELECT DISTINCT(cl_id) as device_id
           |FROM online.ml_hospital_spam_pv_day
           |WHERE partition_date >= '20180402'
           |AND partition_date <= '${partition_date}'
           |AND pv_ratio >= 0.95
           |UNION ALL
           |SELECT DISTINCT(cl_id) as device_id
           |FROM online.ml_hospital_spam_pv_month
           |WHERE partition_date >= '20171101'
           |AND partition_date <= '${partition_date}'
           |AND pv_ratio >= 0.95
         """.stripMargin
      )
      agency_id.show()
      agency_id.createOrReplaceTempView("agency_id")
      //每日新用户
      val device_id_newUser = sc.sql(
        s"""
           |select distinct(os.device_id) as device_id
           |from online.ml_device_day_active_status os left join blacklist
829
           |on os.device_id = blacklist.device_id
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
           |where os.active_type != '4'
           |and os.first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
           |    ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
           |    ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
           |    ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
           |    ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
           |    ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
           |    ,'promotion_shike','promotion_julang_jl03','','unknown')
           |and os.partition_date ='${partition_date}'
           |and blacklist.device_id is null
         """.stripMargin
      )
      device_id_newUser.show()
      device_id_newUser.createOrReplaceTempView("device_id_new")

      //每日老用户
      val device_id_oldUser = sc.sql(
        s"""
           |select distinct(os.device_id) as device_id
           |from online.ml_device_day_active_status os left join blacklist
           |on os.device_id=blacklist.device_id
           |where os.active_type = '4'
           |and os.first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
           |    ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
           |    ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
           |    ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
           |    ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
           |    ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
           |    ,'promotion_shike','promotion_julang_jl03','','unknown')
           |and os.partition_date ='${partition_date}'
           |and blacklist.device_id is null
         """.stripMargin
      )
      device_id_oldUser.show()
      device_id_oldUser.createOrReplaceTempView("device_id_old")


867 868

      val all_clk = sc.sql(
869
        s"""
870
           |select ov.cl_id as device_id
871 872 873 874 875
           |from online.tl_hdfs_maidian_view ov left join agency_id
           |on ov.cl_id = agency_id.device_id
           |where ov.action = 'on_click_diary_card'
           |and ov.cl_id != "NULL"
           |and ov.partition_date='${partition_date}'
876
           |and agency_id.device_id is  null
877 878
       """.stripMargin
      )
879
      all_clk.show()
880 881 882 883 884
      all_clk.createOrReplaceTempView("all_clk_diary_card")

      //1.当天老用户中的点击用户数
      val old_clk_count = sc.sql(
        s"""
885
           |select '${stat_date}' as stat_date,count(distinct(oc.device_id)) as old_clk_count
886
           |from all_clk_diary_card oc inner join device_id_old
887 888 889
           |on oc.device_id = device_id_old.device_id
       """.stripMargin
      )
890
      old_clk_count.show()
891 892 893
      //1.1有点击的老用户
      val old_clk_device = sc.sql(
        s"""
894
           |select distinct(oc.device_id) as device_id
895
           |from all_clk_diary_card oc inner join device_id_old
896 897
           |on oc.device_id = device_id_old.device_id
       """.stripMargin
898
      )
899
      old_clk_device.createOrReplaceTempView("old_clk_device")
900 901 902



903 904 905
      //2.当天新用户中的点击用户数
      val new_clk_count = sc.sql(
        s"""
906
           |select '${stat_date}' as stat_date,count(distinct(oc.device_id)) as new_clk_count
907
           |from all_clk_diary_card oc inner join device_id_new
908 909 910 911 912 913
           |on oc.device_id = device_id_new.device_id
       """.stripMargin
      )
//2.1 有点击的新用户
      val new_clk_device = sc.sql(
        s"""
914
           |select distinct(oc.device_id) as device_id
915
           |from all_clk_diary_card oc inner join device_id_new
916 917 918 919
           |on oc.device_id = device_id_new.device_id
       """.stripMargin
      )
      new_clk_device.createOrReplaceTempView("new_clk_device")
920 921


922 923 924 925
      //3.当天老用户数

      val old_count = sc.sql(
        s"""
926
           |select '${stat_date}' as stat_date,count(distinct(dio.device_id)) as old_count
927
           |from device_id_old dio left join agency_id
928
           |on dio.device_id = agency_id.device_id
929
           |where agency_id.device_id is null
930 931 932 933 934 935
       """.stripMargin
      )

      //4.当天新用户数
      val new_count = sc.sql(
        s"""
936
           |select '${stat_date}' as stat_date,count(distinct(din.device_id)) as new_count
937
           |from device_id_new din left join agency_id
938
           |on din.device_id = agency_id.device_id
939
           |where agency_id.device_id is null
940 941 942 943 944 945
       """.stripMargin
      )

      //5.有点击老用户的曝光数
      val exp_clkold_count = sc.sql(
        s"""
946 947
           |select '${stat_date}' as stat_date,count(dp.device_id) as imp_clkold_count
           |from data_feed_exposure_precise dp inner join old_clk_device
948
           |on dp.device_id = old_clk_device.device_id
949 950
           |where stat_date='${stat_date}'
           |group by stat_date
951 952 953 954 955 956
       """.stripMargin
      )

      //6.有点击新用户的曝光数
      val exp_clknew_count = sc.sql(
        s"""
957 958
           |select '${stat_date}' as stat_date,count(dp.device_id) as imp_clknew_count
           |from data_feed_exposure_precise dp inner join new_clk_device
959
           |on dp.device_id = new_clk_device.device_id
960 961
           |where stat_date='${stat_date}'
           |group by stat_date
962 963 964 965 966 967 968 969 970 971
       """.stripMargin
      )

      val result = old_clk_count.join(new_clk_count,"stat_date")
        .join(old_count,"stat_date")
        .join(new_count,"stat_date")
        .join(exp_clkold_count,"stat_date")
        .join(exp_clknew_count,"stat_date")

      GmeiConfig.writeToJDBCTable(result, "device_clk_imp_reason", SaveMode.Append)
972 973 974 975 976 977 978 979


    }

  }


}