1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# -*- coding: UTF-8 -*-
import argparse
import pymysql
import redis
import datetime
import time
import json
import numpy as np
import pandas as pd
from tool import *
import logging
from collections import defaultdict
def get_count(actions):
counts = defaultdict(int)
for x in actions:
counts[x] += 1
return counts
def setup_logger(logger_name, log_file, level=logging.INFO):
my_log = logging.getLogger(logger_name)
formatter = logging.Formatter('%(message)s')
file_handler = logging.FileHandler(log_file, mode='a')
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
my_log.setLevel(level)
my_log.addHandler(file_handler)
my_log.addHandler(stream_handler)
def get_user_service_portrait_not_alipay(cl_id, all_word_tags, all_tag_tag_type, pay_time, all_3tag_2tag, version=1,
exponential=1, normalization_size=7, decay_days=30, size=10):
"""
:param cl_id:
:param all_word_tags:
:param all_tag_tag_type:
:param pay_time 用户下订单的timestamp
:param all_3tag_2tag:
:param version: 0:翔宇版; 1:英赫版
:param size:
:return: 画像(去掉支付行为)
"""
try:
db_jerry_test = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy',
db='jerry_test', charset='utf8')
cur_jerry_test = db_jerry_test.cursor()
# 用户的非搜索、支付的行为
user_df_service_sql = "select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log " \
"where cl_id ='{cl_id}' and time < {pay_time} and action not in " \
"('api/settlement/alipay_callback','do_search')".format(cl_id=cl_id, pay_time=pay_time)
cur_jerry_test.execute(user_df_service_sql)
data = list(cur_jerry_test.fetchall())
if data:
user_df_service = pd.DataFrame(data)
user_df_service.columns = ["time", "cl_id", "score_type", "tag_id", "tag_referrer", "action"]
else:
user_df_service = pd.DataFrame(columns=["time", "cl_id", "score_type", "tag_id", "tag_referrer", "action"])
# 用户的搜索行为
user_df_search_sql = "select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log " \
"where cl_id ='{cl_id}' and time < {pay_time} and " \
"action = 'do_search'".format(cl_id=cl_id, pay_time=pay_time)
cur_jerry_test.execute(user_df_search_sql)
data_search = list(cur_jerry_test.fetchall())
db_jerry_test.close()
if data_search:
user_df_search = pd.DataFrame(data_search)
user_df_search.columns = ["time", "cl_id", "score_type", "tag_id", "tag_referrer", "action"]
else:
user_df_search = pd.DataFrame(columns=["time", "cl_id", "score_type", "tag_id", "tag_referrer", "action"])
# 搜索词转成tag
# user_df_search_2_tag = pd.DataFrame(columns=list(user_df_service.columns))
for index, row in user_df_search.iterrows():
if row['tag_referrer'] in all_word_tags:
for search_tag in all_word_tags[row['tag_referrer']]:
row['tag_id'] = int(search_tag)
user_df_service = user_df_service.append(row, ignore_index=True)
break
# 增加df字段(days_diff_now, tag_type, tag2)
if not user_df_service.empty:
user_df_service["days_diff_now"] = round((int(time.time()) - user_df_service["time"].astype(float)) / (24 * 60 * 60))
user_df_service["tag_type"] = user_df_service.apply(lambda x: all_tag_tag_type.get(x["tag_id"]), axis=1)
user_df_service = user_df_service[user_df_service['tag_type'].isin(['2','3'])]
user_log_df_tag2_list = user_df_service[user_df_service['tag_type'] == '2']['tag_id'].unique().tolist()
user_df_service["tag2"] = user_df_service.apply(lambda x:
get_tag2_from_tag3(x.tag_id, all_3tag_2tag, user_log_df_tag2_list)
if x.tag_type == '3' else x.tag_id, axis=1)
user_df_service["tag2_type"] = user_df_service.apply(lambda x: all_tag_tag_type.get(x["tag2"]), axis=1)
# 算分及比例
if version == 1:
user_df_service["tag_score"] = user_df_service.apply(
lambda x: compute_henqiang(x.days_diff_now, decay_days, normalization_size, exponential)/get_action_tag_count(user_df_service, x.time) if x.score_type == "henqiang" else (
compute_jiaoqiang(x.days_diff_now, decay_days, normalization_size, exponential)/get_action_tag_count(user_df_service, x.time) if x.score_type == "jiaoqiang" else (
compute_ai_scan(x.days_diff_now, decay_days, normalization_size, exponential)/get_action_tag_count(user_df_service, x.time) if x.score_type == "ai_scan" else (
compute_ruoyixiang(x.days_diff_now, decay_days, normalization_size, exponential)/get_action_tag_count(user_df_service, x.time) if x.score_type == "ruoyixiang" else
compute_validate(x.days_diff_now, decay_days, normalization_size, exponential)/get_action_tag_count(user_df_service, x.time)))), axis=1)
finally_score = user_df_service.groupby(by=["tag2", "tag2_type"]).agg(
{'tag_score': 'sum', 'cl_id': 'first', 'action': get_count}).reset_index().sort_values(by=["tag_score"],
ascending=False)
finally_score['weight'] = 100 * finally_score['tag_score'] / finally_score['tag_score'].sum()
finally_score["pay_type"] = finally_score.apply(
lambda x: 3 if x.action == "api/order/validate" else (
2 if x.action == "api/settlement/alipay_callback" else 1
), axis=1
)
gmkv_tag_score_sum_list = finally_score["tag2"].to_list()[:size]
# 获取tag的得分来源(action信息)
debug_tag_score_sum = finally_score[["tag2", "tag_score", "action"]][:size].to_dict('record')
debug_tag_score_sum_dict = {info["tag2"]: info for info in debug_tag_score_sum}
elif version == 0:
user_df_service["tag_score"] = user_df_service.apply(
lambda x: compute_henqiang(x.days_diff_now, decay_days, normalization_size, exponential) if x.score_type == "henqiang" else (
compute_jiaoqiang(x.days_diff_now, decay_days, normalization_size, exponential) if x.score_type == "jiaoqiang" else (
compute_ai_scan(x.days_diff_now, decay_days, normalization_size, exponential) if x.score_type == "ai_scan" else (
compute_ruoyixiang(x.days_diff_now, decay_days, normalization_size, exponential) if x.score_type == "ruoyixiang" else
compute_validate(x.days_diff_now, decay_days, normalization_size, exponential)))),
axis=1)
finally_score = user_df_service.sort_values(by=["tag_score", "time"], ascending=False)
finally_score.drop_duplicates(subset="tag2", inplace=True, keep="first")
finally_score["weight"] = 100 * finally_score['tag_score'] / finally_score['tag_score'].sum()
gmkv_tag_score_sum_list = finally_score["tag2"].to_list()[:size]
# 获取tag的得分来源(action信息)
debug_tag_score_sum = finally_score[["tag2", "tag_score", "action", "time"]][:size].to_dict('record')
debug_tag_score_sum_dict = {info["tag2"]: str(datetime.datetime.fromtimestamp(int(info["time"]))) for
info in debug_tag_score_sum}
# 没有用户的画像
else:
gmkv_tag_score_sum_list = list()
debug_tag_score_sum_dict = dict()
return gmkv_tag_score_sum_list, debug_tag_score_sum_dict
except Exception as e:
print(e)
return list(), dict()
def get_2_tags_coincide_rate(device_order_tags, device_portrait_result, portrait_top_n, coincide_n):
"""
:param device_order_tags:
:param device_portrait_result:
:param portrait_top_n:
:param coincide_n:
:return: 匹配度:比对的上的用户数/昨天下单了的且有画像的用户数 * 100%
比对的上:去掉下单和验证行为的画像的前portrait_top_n个tag 与 用户下单的美购的tag 有coincide_n个重合个数
"""
device_count = len(device_order_tags) # 总的下单设备数
coincide_count = 0 # 比对的上的设备数
not_coincide_no_portrait = 0 # 比对不上的且没有画像的设备数
not_coincide_no_portrait_device_ids = [] # 比对不上的且没有画像的设备
not_coincide_have_portrait_device_ids = [] # 比对不上的且有画像的设备数
not_coincide_have_portrait = 0 # 比对不上的且有画像的设备
for device in device_order_tags:
order_tags = device_order_tags[device]
portrait_tags = device_portrait_result[device]
if portrait_tags:
portrait_tags = portrait_tags[:portrait_top_n]
else:
# 没有画像的设备
not_coincide_no_portrait += 1
not_coincide_no_portrait_device_ids.append(device)
continue
# 有画像且匹配的上
if len(set(order_tags).intersection(set(portrait_tags))) >= coincide_n:
coincide_count += 1
# 有画像且匹配不上
else:
not_coincide_have_portrait += 1
not_coincide_have_portrait_device_ids.append(device)
coincide_rate = coincide_count/(device_count-not_coincide_no_portrait)
result = {"device_count": device_count, "coincide_count": coincide_count, "coincide_rate": coincide_rate,
"not_coincide_have_portrait_count": not_coincide_have_portrait,
1 "not_coincide_no_portrait_count": not_coincide_no_portrait,
"not_coincide_no_portrait_device_ids": not_coincide_no_portrait_device_ids,
"not_coincide_have_portrait_device_ids": not_coincide_have_portrait_device_ids}
return result
def get_user_order_info_yesterday(order_date, order_date_tomorrow):
# 获取昨天下单的用户设备id,下单的美购,美购对应的tag
# api_order只有用户的user_id,一个user_id对应多个device_id
# 用户一次可以下多个订单(美购),一个美购对应多个tag
sql_device_info_yesterday = """
SELECT tmp1.user_id,
c.device_id,
tmp1.service_ids,
tmp1.tag_ids,
tmp1.pay_time
FROM
(SELECT tmp.user_id,
tmp.service_ids,
tmp.tag_ids,
tmp.pay_time,
max(tmp.device_id) device_id_id
FROM
(SELECT a.user_id,
a.service_ids,
a.tag_ids,
a.pay_time,
b.device_id
FROM
(SELECT user_id,
max(pay_time) AS pay_time,
group_concat(DISTINCT `service_id` separator ',') service_ids,
group_concat(DISTINCT `tag_id` separator ',') tag_ids
FROM
(SELECT d.user_id,
d.service_id,
unix_timestamp(d.pay_time) AS pay_time,
e.tag_id
FROM api_order d
LEFT JOIN api_servicetag e ON d.service_id = e.service_id
LEFT JOIN api_tag f ON e.tag_id = f.id
WHERE d.status=1
AND d.pay_time>'{order_date}'
AND d.pay_time<'{order_date_tomorrow}'
AND f.tag_type+0 <'4'+0) tmp2
GROUP BY user_id) a
LEFT JOIN statistic_device_user b ON a.user_id = b.user_id) tmp
GROUP BY tmp.user_id) tmp1
LEFT JOIN statistic_device c ON tmp1.device_id_id = c.id
WHERE c.device_id IS NOT NULL
""".format(order_date=order_date, order_date_tomorrow=order_date_tomorrow)
mysql_results = get_data_by_mysql('172.16.30.141', 3306, 'work', 'BJQaT9VzDcuPBqkd', 'zhengxing',
sql_device_info_yesterday)
device_ids_info = [(i["device_id"], int(i["pay_time"])) for i in mysql_results]
all_device_action_tags = {i["device_id"]: [int(tag) for tag in i["tag_ids"].split(",")] for i in mysql_results}
return device_ids_info, all_device_action_tags
def get_user_diary_click_info_yesterday(click_date, click_date_tomorrow):
# 获取昨天在首页精选点击日记的用户设备id,点击的日记,日记对应的tag
# 一个用户对应多个日记,一个日记对应多个tag
sql_device_info_yesterday = """
SELECT cl_id device_id,
max(click_time) AS click_time,
group_concat(DISTINCT `diary_id` separator ',') diary_ids,
group_concat(DISTINCT `tag_id` separator ',') tag_ids
FROM
(SELECT d.cl_id,
d.diary_id,
unix_timestamp(d.click_time) AS click_time,
e.tag_id
FROM jerry_test.user_click_diary_log d
LEFT JOIN eagle.src_mimas_prod_api_diary_tags e ON d.diary_id = e.diary_id
LEFT JOIN eagle.src_zhengxing_api_tag f ON e.tag_id = f.id
WHERE d.action_from='home精选'
AND d.action='on_click_card'
AND d.click_time>'{click_date}'
AND d.click_time<'{click_date_tomorrow}'
AND f.tag_type+0 <'4'+0
AND SUBSTR(MD5(d.cl_id),-1,1) IN ('0','1','2','3','4','a','b','c','e')) tmp2
GROUP BY cl_id
""".format(click_date=click_date, click_date_tomorrow=click_date_tomorrow)
mysql_results = get_data_by_mysql('172.16.40.158', 4000, 'st_user', 'aqpuBLYzEV7tML5RPsN1pntUzFy', 'jerry_test', sql_device_info_yesterday)
device_ids_info = [(i["device_id"], int(i["click_time"])) for i in mysql_results]
all_device_action_tags = {i["device_id"]: [int(tag) for tag in i["tag_ids"].split(",")] for i in mysql_results}
return device_ids_info, all_device_action_tags
def get_user_service_click_info_yesterday(click_date, click_date_tomorrow):
# 获取昨天在美购首页有过点击的用户设备id,点击的美购,美购对应的tag
# 一个用户对应多个美购,一个美购对应多个tag
sql_device_info_yesterday = """
SELECT cl_id device_id,
max(click_time) AS click_time,
group_concat(DISTINCT `service_id` separator ',') service_ids,
group_concat(DISTINCT `tag_id` separator ',') tag_ids
FROM
(SELECT d.cl_id,
d.service_id,
unix_timestamp(d.click_time) AS click_time,
e.tag_id
FROM jerry_test.user_click_service_log d
LEFT JOIN eagle.src_zhengxing_api_servicetag e ON d.service_id = e.service_id
LEFT JOIN eagle.src_zhengxing_api_tag f ON e.tag_id = f.id
WHERE d.action_from='welfare_home_list_item'
AND d.action='goto_welfare_detail'
AND d.click_time>'{click_date}'
AND d.click_time<'{click_date_tomorrow}'
AND f.tag_type+0 <'4'+0
AND SUBSTR(MD5(d.cl_id),-1,1) IN ('0','1','2','3','4','a','b','c','e')) tmp2
GROUP BY cl_id
""".format(click_date=click_date, click_date_tomorrow=click_date_tomorrow)
mysql_results = get_data_by_mysql('172.16.40.158', 4000, 'st_user', 'aqpuBLYzEV7tML5RPsN1pntUzFy', 'jerry_test', sql_device_info_yesterday)
device_ids_info = [(i["device_id"], int(i["click_time"])) for i in mysql_results]
all_device_action_tags = {i["device_id"]: [int(tag) for tag in i["tag_ids"].split(",")] for i in mysql_results}
return device_ids_info, all_device_action_tags
if __name__ == '__main__':
try:
parser = argparse.ArgumentParser(description='画像匹配度的统计')
my_yesterday = str(datetime.date.today() - datetime.timedelta(days=1))
parser.add_argument("-o", "--order_date", type=str, dest="order_date", default=my_yesterday, help="统计的行为日期")
parser.add_argument("-log1", "--log1_file", type=str, dest="portrait_stat_log_path",
default="portrait_stat.log", help="画像统计的日志地址")
parser.add_argument("-log2", "--log2_file", type=str, dest="debug_portrait_stat_log_path",
default="debug_portrait_stat.log", help="画像统计的日志地址")
parser.add_argument("-t", "--top", type=int, dest="portrait_top_n", default=3, help="选取画像的前n个tag去统计匹配度")
parser.add_argument("-c", "--coincide", type=int, dest="coincide_n", default=1, help="选取n个tag重合个数作为判断是否匹配的阈值")
parser.add_argument("-v", "--version", type=int, dest="version", default=1, help="选取翔宇(0),英赫(1)版本进行统计")
parser.add_argument("-e", "--exponential", type=int, dest="exponential", default=0, help="是否采用指数衰减")
parser.add_argument("-n", "--normalization_size", type=int, dest="normalization_size", default=7,
help="天数差归一化的区间")
parser.add_argument("-d", "--decay_days", type=int, dest="decay_days", default=30, help="分数衰减的天数")
parser.add_argument("-a", "--action_type", dest="action_type", nargs='+', help="计算匹配度的行为")
parser.add_argument("-s", "--save_tidb", type=int, dest="save_tidb", default=1, help="统计结果是否存tidb")
args = parser.parse_args()
order_date = args.order_date
order_date_tomorrow = str(datetime.datetime.strptime(order_date, '%Y-%m-%d') + datetime.timedelta(days=1))
portrait_stat_log_path = args.portrait_stat_log_path
debug_portrait_stat_log_path = args.debug_portrait_stat_log_path
cmd_portrait_top_n = args.portrait_top_n
cmd_coincide_n = args.coincide_n
version = args.version
exponential = args.exponential
normalization_size = args.normalization_size
decay_days = args.decay_days
action_type = args.action_type
save_tidb = args.save_tidb
LOG_DIR = "/home/gmuser/gyz/log/"
my_today = str(datetime.date.today())
setup_logger("log1", LOG_DIR + portrait_stat_log_path)
setup_logger("log2", LOG_DIR + debug_portrait_stat_log_path)
log1 = logging.getLogger('log1')
log2 = logging.getLogger('log2')
# 获取搜索词及其近义词对应的tag
all_word_tags = get_all_word_tags()
all_tag_tag_type = get_all_tag_tag_type()
# 3级tag对应的2级tag
all_3tag_2tag = get_all_3tag_2tag()
for action in action_type:
# 获取昨天产生行为的设备id、以及行为对应的tag
action_type_detail = ""
device_ids_lst = list()
all_device_action_tags = dict()
if action == "order":
device_ids_lst, all_device_action_tags = get_user_order_info_yesterday(order_date, order_date_tomorrow)
action_type_detail = "昨天下单了的用户"
elif action == "diary":
device_ids_lst, all_device_action_tags = get_user_diary_click_info_yesterday(order_date,
order_date_tomorrow)
action_type_detail = "昨天在首页精选点击了日记的用户"
elif action == "service":
device_ids_lst, all_device_action_tags = get_user_service_click_info_yesterday(order_date,
order_date_tomorrow)
action_type_detail = "昨天在美购首页点击了美购的用户"
else:
break
# tags扩展2级tags
all_device_action_tags2 = dict()
for device in all_device_action_tags:
tags = all_device_action_tags[device]
for tag in tags:
tags2 = all_3tag_2tag.get(tag, [])
tags += tags2
all_device_action_tags2[device] = tags
# 用户的去除支付行为的画像
all_device_portrait_result = dict()
debug_all_device_portrait_result = dict()
for order_info in device_ids_lst:
device = order_info[0]
pay_time = order_info[1]
portrait_result, debug_portrait_result = get_user_service_portrait_not_alipay(device, all_word_tags,
all_tag_tag_type, pay_time,
all_3tag_2tag,
version=version,
exponential=exponential,
normalization_size=normalization_size,
decay_days=decay_days,
size=-1)
all_device_portrait_result[device] = portrait_result
debug_all_device_portrait_result[device] = debug_portrait_result
# 比较两个tag列表的重合率
result = get_2_tags_coincide_rate(all_device_action_tags2, all_device_portrait_result, cmd_portrait_top_n,
cmd_coincide_n)
# 有画像没匹配上的用户的画像信息
no_coincide_devices = result["not_coincide_have_portrait_device_ids"]
no_coincide_devices_debug = dict()
log2.info({"统计日期": my_today})
log2.info({"参数信息": args})
log2.info({"版本": "英赫版" if version == 1 else "翔宇版"})
log2.info({"统计用户": action_type_detail})
for device in no_coincide_devices:
no_coincide_devices_debug = dict()
device_portrait_n = all_device_portrait_result[device][:args.portrait_top_n]
device_order_tags = all_device_action_tags2[device]
debug_device_portrait_result = debug_all_device_portrait_result[device]
no_coincide_devices_debug[device] = {
"画像的前{top_n}个tag".format(top_n=args.portrait_top_n): [debug_device_portrait_result[tag] for tag in
device_portrait_n],
"用户行为对应的tag": [debug_device_portrait_result.get(tag, dict()) for tag in device_order_tags]
}
log2.info("-" * 66)
log2.info(no_coincide_devices_debug)
log2.info("\n"*6)
# 统计画像更新的耗时和更新的设备数
sql = "select count(*) from user_service_portrait_tags where stat_date='{my_today}'".format(my_today=my_today)
portrait_device_count = get_data_by_mysql('172.16.40.158', 4000, 'st_user', 'aqpuBLYzEV7tML5RPsN1pntUzFy', 'jerry_test', sql)
with open(LOG_DIR + "dist_portrait.log", 'r') as f:
lines = f.readlines()
start_datetime_str = lines[0][:19]
end_datetime_str = lines[-1][:19]
start_datetime = datetime.datetime.strptime(start_datetime_str, '%Y-%m-%d %H:%M:%S')
end_datetime = datetime.datetime.strptime(end_datetime_str, '%Y-%m-%d %H:%M:%S')
time_consuming = (end_datetime - start_datetime).seconds / 60
log1.info({"画像信息统计日期": my_today})
log1.info({"参数信息": args})
log1.info({"版本": "英赫版" if version == 1 else "翔宇版"})
log1.info({"统计用户": action_type_detail})
log1.info({"画像更新耗时(分钟)": time_consuming})
log1.info({"画像更新的设备数": portrait_device_count[0]["count(*)"]})
log1.info("")
log1.info({"统计画像匹配度所用数据的日期": order_date})
log1.info({"统计画像的选取前n个tag": cmd_portrait_top_n})
log1.info({"重合个数": cmd_coincide_n})
log1.info({"有行为的人数": result["device_count"]})
log1.info({"比对的上的人数": result["coincide_count"]})
log1.info({"匹配度": result["coincide_rate"]})
log1.info({"比对不上的有画像的人数": result["not_coincide_have_portrait_count"]})
log1.info({"比对不上的无画像的人数": result["not_coincide_no_portrait_count"]})
log1.info("="*66)
# 统计数据进tidb
if save_tidb:
tplt = "insert into user_portrait_tags_evalution values(null,'{0}','{1}','{2}',{3},{4},{5},{6},{7})"
stat_date = order_date.replace("-", "")
insert_sql = tplt.format(stat_date, "英赫版" if version == 1 else "翔宇版", action_type_detail,
result["device_count"], result["coincide_count"], result["coincide_rate"],
result["not_coincide_have_portrait_count"],
result["not_coincide_no_portrait_count"])
write_data_by_mysql('172.16.40.158', 4000, 'st_user', 'aqpuBLYzEV7tML5RPsN1pntUzFy', 'jerry_test', insert_sql)
except Exception as e:
print(e)