monitor.py 18.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from pyspark.streaming.kafka import KafkaUtils
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.streaming import StreamingContext
from pyspark import SparkConf
import json
import msgpack
import pymysql
import pandas as pd
import time
from elasticsearch import Elasticsearch as Es
import redis
import datetime
import smtplib
import requests
from email.mime.text import MIMEText
from email.utils import formataddr
from email.mime.multipart import MIMEMultipart
from email.mime.application import MIMEApplication
import numpy as np

def get_es():
    init_args = {'sniff_on_start': False,'sniff_on_connection_fail': False,}

    new_hosts =[{'host': '172.16.31.17','port': 9000,}, {'host': '172.16.31.11','port': 9000,}, {'host': '172.16.31.13','port': 9000,}]

    new_es = Es(hosts=new_hosts, **init_args)
    return new_es
def es_index_adapt(index_prefix, doc_type, rw=None):
    """get the adapted index name
    """
    assert rw in [None, 'read', 'write']
    index = '-'.join((index_prefix, doc_type))
    if rw:
        index = '-'.join((index, rw))
    return index
def es_query(doc, body, offset, size, es=None):
    if es is None:
        es = get_es()

    index = es_index_adapt(index_prefix='gm-dbmw',doc_type=doc)
    res = es.search(index=index,timeout='10s',body=body,from_=offset,size=size)
    return res
def es_mquery(doc, body, es=None):
    if es is None:
        es = get_es()

    index = es_index_adapt(index_prefix='gm-dbmw',doc_type=doc)
    res = es.msearch(body,index=index)
    # res = es.search(index=index,timeout='10s',body=body,from_=offset,size=size)
    return res

def compute_henqiang(x):
    score = 15-x*((15-0.5)/180)
    if score>0.5:
        return score
    else:
        return 0.5
def compute_jiaoqiang(x):
    score = 12-x*(12/180)
    if score>0.5:
        return score
    else:
        return 0.5
def compute_ruoyixiang(x):
    score = 5-x*((5-0.5)/180)
    if score>0.5:
        return score
    else:
        return 0.5
def compute_validate(x):
    score = 10-x*((10-0.5)/180)
    if score>0.5:
        return score
    else:
        return 0.5
def tag_list2dict(lst,size):
    result = []
    if lst:
        for i in lst:
            tmp = dict()
            tmp["content"] = i["tag_id"]
            if isinstance(i,int):
                tmp["type"] = "tag"
            else:
                tmp["type"] = "search_word"
            tmp["score"] = i["tag_score"]
            result.append(tmp)
    return result[:size]

def query_diary(query,size,have_read_diary_list):
    url = "http://172.16.44.34:80/v1/once"
    header_dict = {'Content-Type': 'application/x-www-form-urlencoded'}
    # recall diary
    param_dict = {}
    param_dict["method"] = "doris/search/query_diary"
    param_detail = {
        "size": size,
        "query": query,
        "sort_type": 21,
        "filters": {"is_sink": False, "content_level": [5, 4, 3.5, 3], "has_cover": True},
        "have_read_diary_list": have_read_diary_list
    }
    param_dict["params"] = json.dumps(param_detail)
    results = requests.post(url=url, data=param_dict, headers=header_dict)
    diary = json.loads(results.content)
    diary_list = list()
    for items in diary['data']['hits']['hits']:
        diary_list.append(items['_id'])
    return  diary_list


def get_user_tag_score1(cur, cl_id):
    #compute and store score
    query_user_log = """select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log where cl_id = '%s' """ % (cl_id)
    cur.execute(query_user_log)
    user_log = cur.fetchall()
    if user_log:
        user_log_df = pd.DataFrame(list(user_log))
        user_log_df.columns = ["time", "cl_id", "score_type","tag_id","tag_referrer","action"]
        user_log_df["tag_id"] = np.where(user_log_df["action"] == "do_search",user_log_df["tag_referrer"],user_log_df["tag_id"])
        max_time_user_log_at_difftype = user_log_df.groupby(by=["score_type","tag_id"]).apply(lambda t: t[t.time == t.time.max()]).reset_index(drop=True)
        max_time_user_log_at_difftype["days_diff_now"] = round((int(time.time())-max_time_user_log_at_difftype["time"]) / (24*60*60))
        max_time_user_log_at_difftype["tag_score"] = max_time_user_log_at_difftype.apply(
            lambda x: compute_henqiang(x.days_diff_now) if x.score_type == "henqiang" else (
                compute_jiaoqiang(x.days_diff_now) if x.score_type == "jiaoqiang" else (
                    compute_ruoyixiang(x.days_diff_now) if x.score_type == "ruoyixiang" else compute_validate(x.days_diff_now))), axis=1)
        finally_score = max_time_user_log_at_difftype.groupby("tag_id").apply(lambda x: x[x.tag_score==x.tag_score.max()]).reset_index(drop=True)[["time","cl_id","tag_id","tag_score"]].drop_duplicates()
        finally_score = finally_score.sort_values(by=["tag_score","time"],ascending=False)
        tag_id_score = dict(zip(finally_score["tag_id"],finally_score["tag_score"]))
        tag_id_list = tag_list2dict(finally_score["tag_id"].tolist()[:3])
        return tag_id_list
    else:
        return []


def get_user_tag_score(cl_id, size=3):
    db_jerry_test = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC',
                                    db='jerry_test', charset='utf8')
    cur = db_jerry_test.cursor()
    #compute and store score
    query_user_log = """select time,cl_id,score_type,tag_id,tag_referrer,action from user_new_tag_log where cl_id = '%s' """ % (cl_id)
    cur.execute(query_user_log)
    user_log = cur.fetchall()
    db_jerry_test.close()

    if user_log:
        user_log_df = pd.DataFrame(list(user_log))
        user_log_df.columns = ["time", "cl_id", "score_type","tag_id","tag_referrer","action"]
        user_log_df["tag_id"] = np.where(user_log_df["action"] == "do_search",user_log_df["tag_referrer"],user_log_df["tag_id"])
        user_log_df["days_diff_now"] = round((int(time.time())-user_log_df["time"]) / (24*60*60))
        user_log_df["tag_score"] = user_log_df.apply(
            lambda x: compute_henqiang(x.days_diff_now) if x.score_type == "henqiang" else (
                compute_jiaoqiang(x.days_diff_now) if x.score_type == "jiaoqiang" else (
                    compute_ruoyixiang(x.days_diff_now) if x.score_type == "ruoyixiang" else compute_validate(x.days_diff_now))), axis=1)
        finally_score = user_log_df.sort_values(by=["tag_score","time"],ascending=False)
        finally_score.drop_duplicates(subset="tag_id", inplace=True)
        finally_score_lst = finally_score[["tag_id","tag_score"]].to_dict('record')
        tag_id_list = tag_list2dict(finally_score_lst,size)
        return tag_id_list
    else:
        return []


def get_extra_param_id_tags(ids_lst):
    ids_tuple  = '(%s)' % ','.join([i for i in ids_lst])
    db_zhengxing = pymysql.connect(host="172.16.30.141", port=3306, user="work",
                                   password="BJQaT9VzDcuPBqkd",
                                   db="zhengxing", cursorclass=pymysql.cursors.DictCursor)
    cur_zhengxing = db_zhengxing.cursor()
    sql = "select tag_ids from category_basic_category where id in %s" % (ids_tuple)
    cur_zhengxing.execute(sql)
    tags = cur_zhengxing.fetchall()
    db_zhengxing.close()

    if tags:
        tmp = []
        for i in tags:
            tmp.extend(i['tag_ids'].split(','))
        result = []
        for i in tmp:
            tmp_dict = dict()
            tmp_dict["content"] = i
            tmp_dict["type"] = "tag"
            result.append(tmp_dict)
        return result
    else:
        send_email("get_extra_param_id_tags","on_click_button_next","id_no_tags")
        return []

def get_hot_search_word():
    db_zhengxing = pymysql.connect(host="172.16.30.141", port=3306, user="work",
                                   password="BJQaT9VzDcuPBqkd",
                                   db="zhengxing", cursorclass=pymysql.cursors.DictCursor)
    cur_zhengxing = db_zhengxing.cursor()
    sql = "select keywords from api_hot_search_words where is_delete=0 order by sorted desc limit 20"
    cur_zhengxing.execute(sql)
    hot_search_words = cur_zhengxing.fetchall()
    db_zhengxing.close()

    if hot_search_words:
        result = []
        for i in hot_search_words:
            tmp = dict()
            tmp["content"] = i['keywords']
            tmp["type"] = "search_word"
            result.append(tmp)
        return result
    else:
        send_email("get_extra_param_id_tags", "on_click_button_next", "id_no_tags")
        return []


def write_to_redis(tag_list, cl_id, action_params='device_open'):
    if tag_list:
        size = list()
        if action_params == 'device_open':
            if len(tag_list) == 1:
                size = [5]
            elif len(tag_list) == 2:
                size = [3, 2]
            elif len(tag_list) == 3:
                size = [2, 2, 1]
        elif action_params == 'new_user_interest' or 'search_word':
            size = [1 for n in range(len(tag_list))]

        have_read_diary_list = list()
        redis_client = redis.StrictRedis.from_url('redis://:ReDis!GmTx*0aN6@172.16.40.133:6379')
        diary_key = 'user_portrait_recommend_diary_queue:device_id:%s:%s' % (
        cl_id, datetime.datetime.now().strftime('%Y-%m-%d'))
        if not redis_client.exists(diary_key):
            # 过滤运营位
            db_zhengxing = pymysql.connect(host="172.16.30.143", port=3306, user="work", password="BJQaT9VzDcuPBqkd",
                                           db="zhengxing",
                                           cursorclass=pymysql.cursors.DictCursor)
            zhengxing_cursor = db_zhengxing.cursor()
            promote_sql = 'select card_id from api_feedoperatev2 where start_time <= %s  and end_time >= %s and is_online = 1 and card_type = 0' % (
                "'" + str(datetime.datetime.now()) + "'", "'" + str(datetime.datetime.now()) + "'")
            promote_num = zhengxing_cursor.execute(promote_sql)
            promote_diary_list = list()
            if promote_num > 0:
                promote_results = zhengxing_cursor.fetchall()
                for i in promote_results:
                    promote_diary_list.append(i["card_id"])
            # 过滤已读
            read_diary_key = "TS:recommend_diary_set:device_id:" + str(cl_id)
            if redis_client.exists(read_diary_key):
                p = redis_client.smembers(read_diary_key)
                have_read_diary_list = list(map(int, p))
            have_read_diary_list.extend(promote_diary_list)

            q_list = list()
            for i in range(len(tag_list)):
                if tag_list[i]['type'] == 'search_word':
                    q_list.append({})
                    q = dict()
                    query = tag_list[i]['content']
                    dsize = size[i]
                    q = {'query': {'multi_match': {'query': query,
                                                   'type': 'cross_fields',
                                                   'operator': 'and',
                                                   'fields': ['doctor.name^4',
                                                              'doctor.hospital.name^3',
                                                              'doctor.hospital.officer_name^3',
                                                              'user.last_name^2',
                                                              'service.name^1']}},
                         'size': dsize,
                         '_source': {'includes': ['id']},
                         'sort': {'recommend_score': {'order': 'desc'}},
                         'filter': {'bool': {'filter': [{'term': {'is_online': True}},
                                                        {'term': {'has_cover': True}},
                                                        {'term': {'is_sink': False}},
                                                        {'terms': {'content_level': [5, 4, 3.5, 3]}}],
                                             'must_not': {'terms': {'id': have_read_diary_list}}}}}
                    q_list.append(q)
                else:
                    q_list.append({})
                    q = dict()
                    q['query'] = {"bool": {
                        "filter": [{"term": {"closure_tag_ids": tag_list[i]['content']}}, {"term": {"is_online": True}},
                                   {"term": {"has_cover": True}}, {"term": {"is_sink": False}},
                                   {"terms": {"content_level": [5, 4, 3.5, 3]}}]}}
                    q['size'] = size[i]
                    q["_source"] = {
                        "includes": ["id"]
                    }
                    if len(have_read_diary_list) > 0:
                        q['query']['bool']['must_not'] = {"terms": {"id": have_read_diary_list}}
                    q['sort'] = {"recommend_score": {"order": "desc"}}
                    q_list.append(q)
            diary_res = es_mquery('diary', q_list)
            if diary_res:
                diary_id_list = list()
                for tags in diary_res['responses']:
                    for i in range(len(tags['hits']['hits'])):
                        diary_id_list.append(tags['hits']['hits'][i]['_source']['id'])

            # res = es_query('diary', q, 0, len(tag_list))
            # diary_id_list = list()
            # for item in res["hits"]["hits"]:
            #     diary_id_list.append(item["_source"]["id"])
            diary_key = 'user_portrait_recommend_diary_queue:device_id:%s:%s' % (
            cl_id, datetime.datetime.now().strftime('%Y-%m-%d'))
            diary_id_list_diff = list(set(diary_id_list))
            diary_id_list_diff.sort(key=diary_id_list.index)
            diary_dict = dict()
            if len(diary_id_list_diff) > 0:
                diary_dict = {
                    'diary_queue': json.dumps(diary_id_list_diff),
                    'cursor': 0,
                    'len_cursor': 0
                }
                redis_client.hmset(diary_key, diary_dict)
                redis_client.expire(diary_key, time=24 * 60 * 60)

                tag_list_log = [i["content"] for i in tag_list]
                db_jerry_test = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC',
                                                db='jerry_test', charset='utf8')
                cur_jerry_test = db_jerry_test.cursor()
                user_recsys_history_query = """insert into user_new_tag_recsys_history values(null,%d, '%s', "%s", "%s")""" % (
                    int(time.time()), cl_id, str(tag_list_log), str(diary_id_list_diff))
                cur_jerry_test.execute(user_recsys_history_query)
                db_jerry_test.commit()
                db_jerry_test.close()
            return 'save redis and history'
        else:
            return 'already recall'


def get_data(x):
    try:
        if 'type' in x[1] and 'device' in x[1]:
            data = x[1]
            if data['type'] == 'on_click_button' \
                    and data['params']['page_name'] == 'home' and data['params']['tab_name'] == '精选' \
                    and data['params']['button_name'] == 'user_feedback_type' \
                    and data['params']['extra_param'][0]["card_content_type"] == "diary":
                # 下面这一块确认一下"feedback_type" 返回的是列表还是字符串,还是两者都有
                if "1" in type(data['params']['extra_param'][0]["feedback_type"]) \
                        or "2" in type(data['params']['extra_param'][0]["feedback_type"]):
                    device_id = x[1]['device']['device_id']
                    diary_id = data['params']['extra_param'][0]["card_id"]
                    return (device_id,diary_id)
    except Exception as e:
        send_email("get_data", "get_data", e)

def Json(x):
    if b'content' in x[1]:
        data = json.loads(str(x[1][b"content"], encoding="utf-8")[:-1])
        if 'SYS' in data and 'APP' in data and 'action' in data['SYS']:
            # 首次打开APP或者重启APP
            if data["SYS"]["action"] == '/api/app/config_v2':
                return True
            else:
                return False
    elif 'type' in x[1] and 'device' in x[1]:
        data = x[1]
        #新用户选择标签或者跳过
        if data['type'] == 'on_click_button' and 'params' in data:
            if 'page_name' in data['params'] and 'button_name' in data['params'] and 'extra_param' in data['params']:
                if data['params']['page_name'] == 'page_choose_interest':
                    return True
        else:
            return False
    else:
        return False

def send_email(app,id,e):
    # 第三方 SMTP 服务
    mail_host = 'smtp.exmail.qq.com'  # 设置服务器
    mail_user = "gaoyazhe@igengmei.com"  # 用户名
    mail_pass = "VCrKTui99a7ALhiK"  # 口令

    sender = 'gaoyazhe@igengmei.com'
    receivers = ['gaoyazhe@igengmei.com']  # 接收邮件,可设置为你的QQ邮箱或者其他邮箱
    e = str(e)
    msg = MIMEMultipart()
    part = MIMEText('app_id:'+id+':fail', 'plain', 'utf-8')
    msg.attach(part)
    msg['From'] = formataddr(["gaoyazhe", sender])
    # 括号里的对应收件人邮箱昵称、收件人邮箱账号
    msg['To'] = ";".join(receivers)
    # message['Cc'] = ";".join(cc_reciver)

    msg['Subject'] = 'spark streaming:app_name:'+app
    with open('error.txt','w') as f:
         f.write(e)
         f.close()
    part = MIMEApplication(open('error.txt', 'r').read())
    part.add_header('Content-Disposition', 'attachment', filename="error.txt")
    msg.attach(part)

    try:
        smtpObj = smtplib.SMTP_SSL(mail_host, 465)
        smtpObj.login(mail_user, mail_pass)
        smtpObj.sendmail(sender, receivers, msg.as_string())
    except smtplib.SMTPException:
        print('error')
#filter lo

#rdd trans
def model(rdd):
    try:
        rdd = rdd.filter(lambda x:Json(x)).repartition(5).map(lambda x:get_data(x))
        return rdd
    except:
        print("fail")

def gbk_decoder(s):
    if not s:
        return None
    else:
        try:
            data = msgpack.loads(s, encoding='utf-8')
            return data
        except Exception as e:
            print(e)
            data = json.loads(s)
            return data
# Spark-Streaming-Kafka
sc = SparkContext(conf=SparkConf().setMaster("spark://nvwa01:7077").setAppName("new_tag_score").set("spark.io.compression.codec", "lzf"))
ssc=SQLContext(sc)
ssc = StreamingContext(sc, 0.4)
sc.setLogLevel("WARN")
kafkaParams = {"metadata.broker.list": "172.16.44.25:9092,172.16.44.31:9092,172.16.44.45:9092",
               "group.id": "new_tag_score",
               "socket.timeout.ms": "600000",
               "auto.offset.reset": "largest"}
try:
    stream = KafkaUtils.createDirectStream(ssc, ["gm-logging-prod","gm-maidian-data"], kafkaParams, keyDecoder=gbk_decoder, valueDecoder=gbk_decoder)
    transformstream = stream.transform(lambda x:model(x))
    transformstream.pprint()
    ssc.start()
    ssc.awaitTermination()
except Exception as e :
    send_email(sc.appName,sc.applicationId,e)