hypothesis_test.py 22.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
#! -*- coding: utf8 -*-
import pandas as pd
from scipy.stats import ttest_ind
from scipy.stats import levene
import datetime
from utils import con_sql
from decimal import *
import numpy as np
import smtplib
from email.mime.text import MIMEText
from email.utils import formataddr


#########推荐策略前后统计指标假设检验(t检验)###############

#自动获取昨日日期
def get_yesterday_date():
	#自动获取昨天的日期,如"2018-08-08"
	"""
	:rtype : str
	"""
	today = datetime.date.today()
	yesterday = today - datetime.timedelta(days=1)
	yesterday = yesterday.strftime("%Y-%m-%d")
	return yesterday
yesterday=get_yesterday_date()
print("监测数据日期:{}".format(yesterday))
#自动获取10日前的日期
def get_somedate():
	#自动获取10日前的日期,如"2018-07-28"
	"""
	:rtype : str
	"""
	today = datetime.date.today()
	someday = today - datetime.timedelta(days=10)
	someday = someday.strftime("%Y-%m-%d")
	return someday
ten_days=get_somedate()
print("===========分割线,T检验最近10日指标与策略前10日指标是否获得显著提升============")
#获取最近10天的数据
def DATA_recently(x,y,z,q,t):
    ten_days = get_somedate()
    sql_cid = "select {0}/{1} as {2} from {3} \
    where stat_date >='{4}' ".format(x,y,z,q,t)
    CVR_DATA_recently = con_sql(sql_cid)
    return CVR_DATA_recently
#
# #获取固定时间的10天的数据
def DATA_fixed(x,y,z,q):
    sql_cid = "select {0}/{1} as {2} from {3} \
    where stat_date >='2018-11-17'  and stat_date<='2018-11-26' group by stat_date".format(x,y,z,q)
    CVR_DATA_fixed = con_sql(sql_cid)
    return CVR_DATA_fixed

def DATA_recently_all(x,y,z,q,m,t):
    ten_days = get_somedate()
    sql_cid = "select ({0}+{1})/{2} as {3} from {4} \
    where stat_date >='{5}' ".format(x,y,z,q,m,t)
    CVR_DATA_recently = con_sql(sql_cid)
    return CVR_DATA_recently
#
# #获取固定时间的10天的数据
def DATA_fixed_all(x,y,z,q,m):
    sql_cid = "select ({0}+{1})/{2} as {3} from {4} \
    where stat_date >='2018-11-17'  and stat_date<='2018-11-26' group by stat_date".format(x,y,z,q,m)
    CVR_DATA_fixed = con_sql(sql_cid)
    return CVR_DATA_fixed
#
# #新用户cvr
x_crv_new_temp=DATA_recently("diary_meigou_newUser","diary_clk_newUser","CVR_new","diary_meigou_crv",ten_days)
x_crv_new=[float(str(Decimal(x_crv_new_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_crv_new_temp))]
y_crv_new_temp=DATA_fixed("diary_meigou_newUser","diary_clk_newUser","CVR_new","diary_meigou_crv")
y_crv_new=[float(str(Decimal(y_crv_new_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_crv_new_temp))]

# #老用户cvr
x_crv_old_temp=DATA_recently("diary_meigou_oldUser","diary_clk_oldUser","CVR_old","diary_meigou_crv",ten_days)
x_crv_old=[float(str(Decimal(x_crv_old_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_crv_old_temp))]
y_crv_old_temp=DATA_fixed("diary_meigou_oldUser","diary_clk_oldUser","CVR_old","diary_meigou_crv")
y_crv_old=[float(str(Decimal(y_crv_old_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_crv_old_temp))]

#
# #新用户ct-cvr
x_ctcrv_new_temp=DATA_recently("diary_meigou_newUser","diary_exp_newUser","CT_CVR_new","diary_meigou_crv",ten_days)
x_ctcrv_new=[float(str(Decimal(x_ctcrv_new_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_ctcrv_new_temp))]
y_ctcrv_new_temp=DATA_fixed("diary_meigou_newUser","diary_exp_newUser","CT_CVR_new","diary_meigou_crv")
y_ctcrv_new=[float(str(Decimal(y_ctcrv_new_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_ctcrv_new_temp))]
#
# #老用户ct-cvr
x_ctcrv_old_temp=DATA_recently("diary_meigou_oldUser","diary_exp_oldUser","CT_CVR_old","diary_meigou_crv",ten_days)
x_ctcrv_old =[float(str(Decimal(x_ctcrv_old_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_ctcrv_old_temp))]
y_ctcrv_old_temp=DATA_fixed("diary_meigou_oldUser","diary_exp_oldUser","CT_CVR_old","diary_meigou_crv")
y_ctcrv_old=[float(str(Decimal(y_ctcrv_old_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_ctcrv_old_temp))]
#
# #新用户ctr(page_view)
x_ctr_new_temp=DATA_recently("clk_count_newUser_all","imp_count_newUser_all","ctr_new","bug_Recommendation_strategy_newUser",ten_days)
x_ctr_new=[float(str(Decimal(x_ctr_new_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_ctr_new_temp))]
y_ctr_new_temp=DATA_fixed("clk_count_newUser_all","imp_count_newUser_all","ctr_new","bug_Recommendation_strategy_newUser")
y_ctr_new=[float(str(Decimal(y_ctr_new_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_ctr_new_temp))]
# #
# #老用户ctr(page_view)
x_ctr_old_temp=DATA_recently("clk_count_oldUser_all","imp_count_oldUser_all","ctr_old","bug_Recommendation_strategy_temp",ten_days)
x_ctr_old=[float(str(Decimal(x_ctr_old_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_ctr_old_temp))]
y_ctr_old_temp=DATA_fixed("clk_count_oldUser_all","imp_count_oldUser_all","ctr_old","bug_Recommendation_strategy_temp")
y_ctr_old=[float(str(Decimal(y_ctr_old_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_ctr_old_temp))]
#
# #新用户ctr(on_click_diary_card)
x_ctr_new_o_temp=DATA_recently_all("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all","ctr_new","on_click_diary_card",ten_days)
x_ctr_new_o=[float(str(Decimal(x_ctr_new_o_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_ctr_new_o_temp))]
y_ctr_new_o_temp=DATA_fixed_all("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all","ctr_new","on_click_diary_card")
y_ctr_new_o=[float(str(Decimal(y_ctr_new_o_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_ctr_new_o_temp))]
#
# #老用户ctr(on_click_diary_card)
x_ctr_old_o_temp=DATA_recently_all("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all","ctr_old","on_click_diary_card",ten_days)
x_ctr_old_o=[float(str(Decimal(x_ctr_old_o_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_ctr_old_o_temp))]
y_ctr_old_o_temp=DATA_fixed_all("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all","ctr_old","on_click_diary_card")
y_ctr_old_o=[float(str(Decimal(y_ctr_old_o_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_ctr_old_o_temp))]
# #
#
#
def t_test(x,y): #进行t检验

    #策略前的数据,赋值给x,策略后的数据赋值给y,均采用10日内数据
    #检验数据方差是否齐性
    a=levene(x,y)
    p_value=a[1] #结果若p_value>0.05,则认为两组数据方差是相等的,否则两组数据方差是不等的

    if p_value>0.05: #认为数据方差具有齐性,equal_var=ture
        t_test=ttest_ind(x,y,equal_var=True)
        t_p_value=t_test[1]
        # print(t_p_value)
        if t_p_value>0.05:
            print("95%置信度认为策略前后两组数据【无显著性差异】,即该指标没有显著变化,p_value:{}" .format(t_p_value))
            print("\n")
        else:
            print("95%置信度认为策略前后两组数据【有显著性差异】,即该指标获得显著变化,p_value:{}" .format(t_p_value))
            print("\n")
    else: #认为数据方差不具有齐性,equal_var=false
        t_test = ttest_ind(x, y, equal_var=False)
        t_p_value = t_test[1]
        if t_p_value > 0.05:
            print("95%置信度认为策略前后两组数据【无显著性差异】,即该指标没有显著变化,p_value:{}" .format(t_p_value))
            print("\n")
        else:
            print("95%置信度认为策略前后两组数据【有显著性差异】,即该指标获得显著变化,p_value:{}" .format(t_p_value))
            print("\n")
#
# ###假设检验,判断是否具有显著性
#
#新用户cvr假设检验
print("【1】新用户CVR假设检验结果:")
crv_new_ttest=t_test(x_crv_new,y_crv_new)
#老用户cvr假设检验
print("【2】老用户CVR假设检验结果:")
crv_old_ttest=t_test(x_crv_old,y_crv_old)
#
#新用户ct_cvr假设检验
print("【3】新用户CT-CVR假设检验结果:")
ctcrv_new_ttest=t_test(x_ctcrv_new,y_ctcrv_new)
# #老用户ct_cvr假设检验
print("【4】老用户CT-CVR假设检验结果:")
ctcrv_old_ttest=t_test(x_ctcrv_old,y_ctcrv_old)
#
#
#新用户ctr假设检验
print("【5】新用户CTR假设检验结果:")
ctr_new_ttest=t_test(x_ctr_new,y_ctr_new)
#老用户ctr假设检验
print("【6】老用户CTR假设检验结果:")
ctr_old_ttest=t_test(x_ctr_old,y_ctr_old)

#新用户ctr(on_click_diary_card)假设检验
print("【7】新用户CTR假设检验(日记本列表ctr)(on_click_diary_card)结果:")
ctr_new_o_ttest=t_test(x_ctr_new_o,y_ctr_new_o)
#老用户ctr(on_click_diary_card)假设检验
print("【8】老用户CTR假设检验(日记本列表ctr)(on_click_diary_card)结果:")
ctr_old_o_ttest=t_test(x_ctr_old_o,y_ctr_old_o)
#
# ###############推荐策略不变的情况下数据假设检验##############
print("===========分割线,卡方检验昨日指标与前5日指标均值是否显著变化============")
# #1 计算每日指标卡方检验
#
# #自动获取5日前的日期
def get_fivedate():
	#自动获取10日前的日期,如"2018-07-28"
	"""
	:rtype : str
	"""
	today = datetime.date.today()
	someday = today - datetime.timedelta(days=5)
	someday = someday.strftime("%Y-%m-%d")
	return someday
five_days=get_fivedate()

#获取最近5天的数据,此函数只适用于on_click_diary_card表格,具体原因可以查看数据代码
def chi_DATA_recently(x,y,z,q,t1,t2):
    sql_cid = "select AVG({0}+{1}),AVG({2}) from {3} \
    where stat_date >= '{4}' and stat_date < '{5}' ".format(x,y,z,q,t1,t2)
    CVR_DATA_recently = con_sql(sql_cid)[0]
    return CVR_DATA_recently
def chi_DATA_yesterday(x,y,z,q,t1):
    sql_cid = "select {0}+{1},{2} from {3} where stat_date='{4}'  ".format(x,y,z,q,t1)
    CVR_DATA_yesterday = con_sql(sql_cid)[0]
    return CVR_DATA_yesterday
#获取最近5天的数据
def chi_DATA_recently_all(x,y,z,t1,t2):
    sql_cid = "select AVG({0}),AVG({1}) from {2} \
    where stat_date >= '{3}' and stat_date < '{4}' ".format(x,y,z,t1,t2)
    CVR_DATA_recently = con_sql(sql_cid)[0]
    return CVR_DATA_recently
def chi_DATA_yesterday_all(x,y,z,t1):
    sql_cid = "select {0},{1} from {2} where stat_date='{3}'  ".format(x,y,z,t1)
    CVR_DATA_yesterday = con_sql(sql_cid)[0]
    return CVR_DATA_yesterday


#整理数据
def data_cal(x,y):
    x_a = [x[0], x[1] - x[0]]
    y_a=[y[0], y[1] - y[0]]
    a_df=pd.DataFrame({'原':x_a,'测':y_a})
    return a_df

def chi_cal(data):
    data['共计'] = data.apply(lambda x: x.sum(), axis=1)
    data.loc['共计'] = data.apply(lambda x: x.sum())
    t1=data.iloc[0]
    t2=data.iloc[1]
    t11_count=t1[0]
    t12_count=t1[1]
    t21_count=t2[0]
    t22_count=t2[1]

    ###理论值计算
    temp1=data['共计']
    rate1=temp1[0]/temp1[2]
    rate2=temp1[1]/temp1[2]
    temp2=data.iloc[2]
    t11_theory=temp2[0]*rate1
    t12_theory=temp2[1]*rate1
    t21_theory = temp2[0]*rate2
    t22_theory = temp2[1]*rate2
    #计算卡方值
    X=(((t11_count-t11_theory)**2)/t11_theory)+(((t12_count-t12_theory)**2)/t12_theory)+(((t21_count-t21_theory)**2)/t21_theory)+(((t22_count-t22_theory)**2)/t22_theory)
    print("卡方值为:{}".format(X))
    #计算自由度
    v=(len(data)-1)*(data.columns.size-1)
    #查表发现阈值为3.84
    if X>3.84:
        print("数据波动较大,超出正常波动范围,95%可能性属于指标【显著变化,请关注】")
        print("\n")
    else:
        print("数据波动较小,95%可能性属于【正常波动】范围")
        print("\n")

#老用户精准点击曝光数据(首页精选日记本列表on_click_diary_card)
print("【1】(精准曝光)首页精选日记本列表老用户CTR数据波动假设检验结果:")
chi_ctr_precise_old_recently=chi_DATA_recently("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",five_days,yesterday)
temp1_old=[float(str(Decimal(chi_ctr_precise_old_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctr_precise_old_recently))]

chi_ctr_precise_old_yesterday=chi_DATA_yesterday("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",yesterday)
temp2_old=[float(chi_ctr_precise_old_yesterday[i]) for i in range(len(chi_ctr_precise_old_yesterday))]

ctr_tst_old=data_cal(temp1_old,temp2_old)
chi_cal(ctr_tst_old)

#新用户精准点击曝光数据(首页精选日记本列表on_click_diary_card)
print("【2】(精准曝光)首页精选日记本列表新用户CTR数据波动假设检验结果:")
chi_ctr_precise_new_recently=chi_DATA_recently("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all_precise","on_click_diary_card",five_days,yesterday)
temp1_new=[float(str(Decimal(chi_ctr_precise_new_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctr_precise_new_recently))]

chi_ctr_precise_new_yesterday=chi_DATA_yesterday("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all_precise","on_click_diary_card",yesterday)
temp2_new=[float(chi_ctr_precise_new_yesterday[i]) for i in range(len(chi_ctr_precise_new_yesterday))]

ctr_tst_new=data_cal(temp1_new,temp2_new)
chi_cal(ctr_tst_new)

#老用户美购转化数据
print("【3】老用户CVR数据波动假设检验结果:")
chi_cvr_old_recently=chi_DATA_recently_all("diary_meigou_oldUser","diary_clk_oldUser","diary_meigou_crv",five_days,yesterday)
cvr_old=[float(str(Decimal(chi_cvr_old_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_cvr_old_recently))]

chi_cvr_old_yesterday=chi_DATA_yesterday_all("diary_meigou_oldUser","diary_clk_oldUser","diary_meigou_crv",yesterday)
cvr_old2=[float(chi_cvr_old_yesterday[i]) for i in range(len(chi_cvr_old_yesterday))]

cvr_tst_old=data_cal(cvr_old,cvr_old2)
chi_cal(cvr_tst_old)
#老用户美购转化数据
print("【4】新用户CVR数据波动假设检验结果:")
chi_cvr_new_recently=chi_DATA_recently_all("diary_meigou_newUser","diary_clk_newUser","diary_meigou_crv",five_days,yesterday)
cvr_new=[float(str(Decimal(chi_cvr_new_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_cvr_new_recently))]

chi_cvr_new_yesterday=chi_DATA_yesterday_all("diary_meigou_newUser","diary_clk_newUser","diary_meigou_crv",yesterday)
cvr_new2=[float(chi_cvr_new_yesterday[i]) for i in range(len(chi_cvr_new_yesterday))]

cvr_tst_new=data_cal(cvr_new,cvr_new2)
chi_cal(cvr_tst_new)
#老用户美购转化数据
print("【5】老用户CT-CVR数据波动假设检验结果:")
chi_ctcvr_old_recently=chi_DATA_recently_all("diary_meigou_oldUser","diary_exp_oldUser","diary_meigou_crv",five_days,yesterday)
ctcvr_old=[float(str(Decimal(chi_ctcvr_old_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctcvr_old_recently))]

chi_ctcvr_old_yesterday=chi_DATA_yesterday_all("diary_meigou_oldUser","diary_exp_oldUser","diary_meigou_crv",yesterday)
ctcvr_old2=[float(chi_ctcvr_old_yesterday[i]) for i in range(len(chi_ctcvr_old_yesterday))]

ctcvr_tst_old=data_cal(ctcvr_old,ctcvr_old2)
chi_cal(ctcvr_tst_old)
#老用户美购转化数据
print("【6】新用户CT-CVR数据波动假设检验结果:")
chi_ctcvr_new_recently=chi_DATA_recently_all("diary_meigou_newUser","diary_exp_newUser","diary_meigou_crv",five_days,yesterday)
ctcvr_new=[float(str(Decimal(chi_ctcvr_new_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctcvr_new_recently))]

chi_ctcvr_new_yesterday=chi_DATA_yesterday_all("diary_meigou_newUser","diary_exp_newUser","diary_meigou_crv",yesterday)
ctcvr_new2=[float(chi_ctcvr_new_yesterday[i]) for i in range(len(chi_ctcvr_new_yesterday))]

ctcvr_tst_new=data_cal(ctcvr_new,ctcvr_new2)
chi_cal(ctcvr_tst_new)

# ###############数据波动大小检验##############
print("===============分割线,开始检测各个指标的5日内的方差和均值==================")

def get_var_data1(x,y,z,t1):
    sql_cid = "select {0}/{1} from {2} \
    where stat_date >= '{3}' ".format(x,y,z,t1)
    CVR_DATA_recently = con_sql(sql_cid)
    return CVR_DATA_recently

def get_var_data2(x,y,z,q,t1):
    sql_cid = "select ({0}+{1})/{2} from {3} \
    where stat_date >= '{4}' ".format(x,y,z,q,t1)
    CVR_DATA_recently = con_sql(sql_cid)
    return CVR_DATA_recently

def collect_data(data):
    tt = [float(data[i][0])*100 for i in range(len(data))]
    return tt

var_ctcvr_old_data=get_var_data1("diary_meigou_oldUser","diary_exp_oldUser","diary_meigou_crv",five_days)
var_ctcvr_old_D=collect_data(var_ctcvr_old_data)
var_ctcvr_old=np.var(var_ctcvr_old_D)
mean_var_ctcvr_old=np.mean(var_ctcvr_old_D)
print("【1-1】老用户CT-CVR数据波动5日内方差检验结果:{}".format(var_ctcvr_old))
print("【1-2】老用户CT-CVR数据波动5日内均值:{}%".format(mean_var_ctcvr_old))
print("\n")


var_ctcvr_new_data=get_var_data1("diary_meigou_newUser","diary_exp_newUser","diary_meigou_crv",five_days)
var_ctcvr_new_D=collect_data(var_ctcvr_new_data)
var_ctcvr_new=np.var(var_ctcvr_new_D)
mean_var_ctcvr_new=np.mean(var_ctcvr_new_D)
print("【2-1】新用户CT-CVR数据波动5日内方差检验结果:{}".format(var_ctcvr_new))
print("【2-2】新用户CT-CVR数据波动5日内均值:{}%".format(mean_var_ctcvr_new))
print("\n")

var_cvr_old_data=get_var_data1("diary_meigou_oldUser","diary_clk_oldUser","diary_meigou_crv",five_days)
var_cvr_old_D=collect_data(var_cvr_old_data)
var_cvr_old=np.var(var_cvr_old_D)
mean_var_cvr_old=np.mean(var_cvr_old_D)
print("【3-1】老用户CVR数据波动5日内方差检验结果:{}".format(var_cvr_old))
print("【3-2】老用户CVR数据波动5日内均值:{}%".format(mean_var_cvr_old))
print("\n")

#
var_cvr_new_data=get_var_data1("diary_meigou_newUser","diary_clk_newUser","diary_meigou_crv",five_days)
var_cvr_new_D=collect_data(var_cvr_new_data)
var_cvr_new=np.var(var_cvr_new_D)
mean_var_cvr_new=np.mean(var_cvr_new_D)
print("【4-1】新用户CVR数据波动5日内方差检验结果:{}".format(var_cvr_new))
print("【4-2】新用户CVR数据波动5日内均值:{}%".format(mean_var_cvr_new))
print("\n")

var_ctr_old_data=get_var_data2("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all","on_click_diary_card",five_days)
var_ctr_old_D=collect_data(var_ctr_old_data)
var_ctr_old=np.var(var_cvr_old_D)
mean_var_ctr_old=np.mean(var_ctr_old_D)
print("【5-1】老用户CTR数据波动5日内方差检验结果:{}".format(var_ctr_old))
print("【5-2】老用户CTR数据波动5日内均值:{}%".format(mean_var_ctr_old))
print("\n")

var_ctr_new_data=get_var_data2("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all","on_click_diary_card",five_days)
var_ctr_new_D=collect_data(var_ctr_new_data)
var_ctr_new=np.var(var_ctr_new_D)
mean_var_ctr_new=np.mean(var_ctr_new_D)
print("【6-1】新用户CTR数据波动5日内方差检验结果:{}".format(var_ctr_new))
print("【6-2】新用户CTR数据波动5日内均值:{}%".format(mean_var_ctr_new))
print("\n")

var_ctr_new_precise_data=get_var_data2("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all_precise","on_click_diary_card",five_days)
var_ctr_new_precise_D=collect_data(var_ctr_new_precise_data)
var_ctr_new_precise=np.var(var_ctr_new_precise_D)
mean_var_ctr_new_precise=np.mean(var_ctr_new_precise_D)
print("【7-1】新用户精准曝光CTR数据波动5日内方差检验结果:{}".format(var_ctr_new_precise))
print("【7-2】新用户精准曝光CTR数据波动5日内均值:{}%".format(mean_var_ctr_new_precise))
print("\n")

var_ctr_old_precise_data=get_var_data2("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",five_days)
var_ctr_old_precise_D=collect_data(var_ctr_old_precise_data)
var_ctr_old_precise=np.var(var_ctr_old_precise_D)
mean_var_ctr_old_precise=np.mean(var_ctr_old_precise_D)
print("【8-1】老用户精准曝光CTR数据波动5日内方差检验结果:{}".format(var_ctr_old_precise))
print("【8-2】老用户精准曝光CTR数据波动5日内均值:{}%".format(mean_var_ctr_old_precise))
print("\n")


# print("============================分割线===================================")
#根据新老用户进行区分
# print("============================新用户各指标假设检验结果分析===================================")
# #新用户cvr假设检验
# print("【1】新用户CVR假设检验结果:")
# crv_new_ttest1=t_test(x_crv_new,y_crv_new)
# #新用户ct_cvr假设检验
# print("【3】新用户CT-CVR假设检验结果:")
# ctcrv_new_ttest1=t_test(x_ctcrv_new,y_ctcrv_new)
# #新用户ctr假设检验
# print("【5】新用户CTR假设检验结果:")
# ctr_new_ttest1=t_test(x_ctr_new,y_ctr_new)
# #新用户ctr(on_click_diary_card)假设检验
# print("【7】新用户CTR假设检验(日记本列表ctr)(on_click_diary_card)结果:")
# ctr_new_o_ttest1=t_test(x_ctr_new_o,y_ctr_new_o)
#
#
#
#
#
# print("============================老用户各指标假设检验结果分析===================================")
# #老用户cvr假设检验
# print("【2】老用户CVR假设检验结果:")
# crv_old_ttest1=t_test(x_crv_old,y_crv_old)
# # #老用户ct_cvr假设检验
# print("【4】老用户CT-CVR假设检验结果:")
# ctcrv_old_ttest1=t_test(x_ctcrv_old,y_ctcrv_old)
# #老用户ctr假设检验
# print("【6】老用户CTR假设检验结果:")
# ctr_old_ttest1=t_test(x_ctr_old,y_ctr_old)
# #老用户ctr(on_click_diary_card)假设检验
# print("【8】老用户CTR假设检验(日记本列表ctr)(on_click_diary_card)结果:")
# ctr_old_o_ttest1=t_test(x_ctr_old_o,y_ctr_old_o)




##发送邮件

# my_sender='gaoyazhe@igengmei.com'
# my_pass = 'VCrKTui99a7ALhiK'
# my_user1='wangzhiwei@igengmei.com'
# def mail():
#     ret = True
#     try:
#         text = "Hi!\nHow are you?\nHere is the link you wanted:\nhttp://www.baidu.com"
#         msg = MIMEText(text, 'plain', 'utf-8')
#         msg['From'] = formataddr(["王志伟", my_sender])
#         msg['To'] = my_user1
#         msg['Subject'] = str(datetime.date.today()) + "-esmm多目标模型训练指标统计"
#         server = smtplib.SMTP_SSL("smtp.exmail.qq.com", 465)
#         server.login(my_sender, my_pass)
#         server.sendmail(my_sender, [my_user1], msg.as_string())
#         server.quit()
#     except Exception:
#         ret=False
#     return ret
#
# ret=mail()
# if ret:
#     print("邮件发送成功")
# else:
#     print("邮件发送失败")

# chi_cvr_new=
# chi_cvr_old=
#
# chi_ctcvr_new=
# chi_ctcvr_old=
#
#
#
# def chi_cal(data):