1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
#! -*- coding: utf8 -*-
import pandas as pd
from scipy.stats import ttest_ind
from scipy.stats import levene
import datetime
from utils import con_sql
from decimal import *
import numpy as np
import smtplib
from email.mime.text import MIMEText
from email.utils import formataddr
#########推荐策略前后统计指标假设检验(t检验)###############
#自动获取昨日日期
def get_yesterday_date():
#自动获取昨天的日期,如"2018-08-08"
"""
:rtype : str
"""
today = datetime.date.today()
yesterday = today - datetime.timedelta(days=1)
yesterday = yesterday.strftime("%Y-%m-%d")
return yesterday
yesterday=get_yesterday_date()
print("监测数据日期:{}".format(yesterday))
#自动获取10日前的日期
def get_somedate():
#自动获取10日前的日期,如"2018-07-28"
"""
:rtype : str
"""
today = datetime.date.today()
someday = today - datetime.timedelta(days=10)
someday = someday.strftime("%Y-%m-%d")
return someday
ten_days=get_somedate()
print("===========分割线,T检验最近10日指标与策略前10日指标是否获得显著提升============")
#获取最近10天的数据
def DATA_recently(x,y,z,q,t):
ten_days = get_somedate()
sql_cid = "select {0}/{1} as {2} from {3} \
where stat_date >='{4}' ".format(x,y,z,q,t)
CVR_DATA_recently = con_sql(sql_cid)
return CVR_DATA_recently
#
# #获取固定时间的10天的数据
def DATA_fixed(x,y,z,q):
sql_cid = "select {0}/{1} as {2} from {3} \
where stat_date >='2018-11-17' and stat_date<='2018-11-26' group by stat_date".format(x,y,z,q)
CVR_DATA_fixed = con_sql(sql_cid)
return CVR_DATA_fixed
def DATA_recently_all(x,y,z,q,m,t):
ten_days = get_somedate()
sql_cid = "select ({0}+{1})/{2} as {3} from {4} \
where stat_date >='{5}' ".format(x,y,z,q,m,t)
CVR_DATA_recently = con_sql(sql_cid)
return CVR_DATA_recently
#
# #获取固定时间的10天的数据
def DATA_fixed_all(x,y,z,q,m):
sql_cid = "select ({0}+{1})/{2} as {3} from {4} \
where stat_date >='2018-11-17' and stat_date<='2018-11-26' group by stat_date".format(x,y,z,q,m)
CVR_DATA_fixed = con_sql(sql_cid)
return CVR_DATA_fixed
#
# #新用户cvr
x_crv_new_temp=DATA_recently("diary_meigou_newUser","diary_clk_newUser","CVR_new","diary_meigou_crv",ten_days)
x_crv_new=[float(str(Decimal(x_crv_new_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_crv_new_temp))]
y_crv_new_temp=DATA_fixed("diary_meigou_newUser","diary_clk_newUser","CVR_new","diary_meigou_crv")
y_crv_new=[float(str(Decimal(y_crv_new_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_crv_new_temp))]
# #老用户cvr
x_crv_old_temp=DATA_recently("diary_meigou_oldUser","diary_clk_oldUser","CVR_old","diary_meigou_crv",ten_days)
x_crv_old=[float(str(Decimal(x_crv_old_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_crv_old_temp))]
y_crv_old_temp=DATA_fixed("diary_meigou_oldUser","diary_clk_oldUser","CVR_old","diary_meigou_crv")
y_crv_old=[float(str(Decimal(y_crv_old_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_crv_old_temp))]
#
# #新用户ct-cvr
x_ctcrv_new_temp=DATA_recently("diary_meigou_newUser","diary_exp_newUser","CT_CVR_new","diary_meigou_crv",ten_days)
x_ctcrv_new=[float(str(Decimal(x_ctcrv_new_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_ctcrv_new_temp))]
y_ctcrv_new_temp=DATA_fixed("diary_meigou_newUser","diary_exp_newUser","CT_CVR_new","diary_meigou_crv")
y_ctcrv_new=[float(str(Decimal(y_ctcrv_new_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_ctcrv_new_temp))]
#
# #老用户ct-cvr
x_ctcrv_old_temp=DATA_recently("diary_meigou_oldUser","diary_exp_oldUser","CT_CVR_old","diary_meigou_crv",ten_days)
x_ctcrv_old =[float(str(Decimal(x_ctcrv_old_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_ctcrv_old_temp))]
y_ctcrv_old_temp=DATA_fixed("diary_meigou_oldUser","diary_exp_oldUser","CT_CVR_old","diary_meigou_crv")
y_ctcrv_old=[float(str(Decimal(y_ctcrv_old_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_ctcrv_old_temp))]
#
# #新用户ctr(page_view)
x_ctr_new_temp=DATA_recently("clk_count_newUser_all","imp_count_newUser_all","ctr_new","bug_Recommendation_strategy_newUser",ten_days)
x_ctr_new=[float(str(Decimal(x_ctr_new_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_ctr_new_temp))]
y_ctr_new_temp=DATA_fixed("clk_count_newUser_all","imp_count_newUser_all","ctr_new","bug_Recommendation_strategy_newUser")
y_ctr_new=[float(str(Decimal(y_ctr_new_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_ctr_new_temp))]
# #
# #老用户ctr(page_view)
x_ctr_old_temp=DATA_recently("clk_count_oldUser_all","imp_count_oldUser_all","ctr_old","bug_Recommendation_strategy_temp",ten_days)
x_ctr_old=[float(str(Decimal(x_ctr_old_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_ctr_old_temp))]
y_ctr_old_temp=DATA_fixed("clk_count_oldUser_all","imp_count_oldUser_all","ctr_old","bug_Recommendation_strategy_temp")
y_ctr_old=[float(str(Decimal(y_ctr_old_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_ctr_old_temp))]
#
# #新用户ctr(on_click_diary_card)
x_ctr_new_o_temp=DATA_recently_all("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all","ctr_new","on_click_diary_card",ten_days)
x_ctr_new_o=[float(str(Decimal(x_ctr_new_o_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_ctr_new_o_temp))]
y_ctr_new_o_temp=DATA_fixed_all("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all","ctr_new","on_click_diary_card")
y_ctr_new_o=[float(str(Decimal(y_ctr_new_o_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_ctr_new_o_temp))]
#
# #老用户ctr(on_click_diary_card)
x_ctr_old_o_temp=DATA_recently_all("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all","ctr_old","on_click_diary_card",ten_days)
x_ctr_old_o=[float(str(Decimal(x_ctr_old_o_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(x_ctr_old_o_temp))]
y_ctr_old_o_temp=DATA_fixed_all("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all","ctr_old","on_click_diary_card")
y_ctr_old_o=[float(str(Decimal(y_ctr_old_o_temp[i][0]).quantize(Decimal('0.0000')))) for i in range(len(y_ctr_old_o_temp))]
# #
#
#
def t_test(x,y): #进行t检验
#策略前的数据,赋值给x,策略后的数据赋值给y,均采用10日内数据
#检验数据方差是否齐性
a=levene(x,y)
p_value=a[1] #结果若p_value>0.05,则认为两组数据方差是相等的,否则两组数据方差是不等的
if p_value>0.05: #认为数据方差具有齐性,equal_var=ture
t_test=ttest_ind(x,y,equal_var=True)
t_p_value=t_test[1]
# print(t_p_value)
if t_p_value>0.05:
print("95%置信度认为策略前后两组数据【无显著性差异】,即该指标没有显著变化,p_value:{}" .format(t_p_value))
print("\n")
else:
print("95%置信度认为策略前后两组数据【有显著性差异】,即该指标获得显著变化,p_value:{}" .format(t_p_value))
print("\n")
else: #认为数据方差不具有齐性,equal_var=false
t_test = ttest_ind(x, y, equal_var=False)
t_p_value = t_test[1]
if t_p_value > 0.05:
print("95%置信度认为策略前后两组数据【无显著性差异】,即该指标没有显著变化,p_value:{}" .format(t_p_value))
print("\n")
else:
print("95%置信度认为策略前后两组数据【有显著性差异】,即该指标获得显著变化,p_value:{}" .format(t_p_value))
print("\n")
#
# ###假设检验,判断是否具有显著性
#
#新用户cvr假设检验
print("【1】新用户CVR假设检验结果:")
crv_new_ttest=t_test(x_crv_new,y_crv_new)
#老用户cvr假设检验
print("【2】老用户CVR假设检验结果:")
crv_old_ttest=t_test(x_crv_old,y_crv_old)
#
#新用户ct_cvr假设检验
print("【3】新用户CT-CVR假设检验结果:")
ctcrv_new_ttest=t_test(x_ctcrv_new,y_ctcrv_new)
# #老用户ct_cvr假设检验
print("【4】老用户CT-CVR假设检验结果:")
ctcrv_old_ttest=t_test(x_ctcrv_old,y_ctcrv_old)
#
#
#新用户ctr假设检验
print("【5】新用户CTR假设检验结果:")
ctr_new_ttest=t_test(x_ctr_new,y_ctr_new)
#老用户ctr假设检验
print("【6】老用户CTR假设检验结果:")
ctr_old_ttest=t_test(x_ctr_old,y_ctr_old)
#新用户ctr(on_click_diary_card)假设检验
print("【7】新用户CTR假设检验(日记本列表ctr)(on_click_diary_card)结果:")
ctr_new_o_ttest=t_test(x_ctr_new_o,y_ctr_new_o)
#老用户ctr(on_click_diary_card)假设检验
print("【8】老用户CTR假设检验(日记本列表ctr)(on_click_diary_card)结果:")
ctr_old_o_ttest=t_test(x_ctr_old_o,y_ctr_old_o)
#
# ###############推荐策略不变的情况下数据假设检验##############
print("===========分割线,卡方检验昨日指标与前5日指标均值是否显著变化============")
# #1 计算每日指标卡方检验
#
# #自动获取5日前的日期
def get_fivedate():
#自动获取10日前的日期,如"2018-07-28"
"""
:rtype : str
"""
today = datetime.date.today()
someday = today - datetime.timedelta(days=5)
someday = someday.strftime("%Y-%m-%d")
return someday
five_days=get_fivedate()
#获取最近5天的数据,此函数只适用于on_click_diary_card表格,具体原因可以查看数据代码
def chi_DATA_recently(x,y,z,q,t1,t2):
sql_cid = "select AVG({0}+{1}),AVG({2}) from {3} \
where stat_date >= '{4}' and stat_date < '{5}' ".format(x,y,z,q,t1,t2)
CVR_DATA_recently = con_sql(sql_cid)[0]
return CVR_DATA_recently
def chi_DATA_yesterday(x,y,z,q,t1):
sql_cid = "select {0}+{1},{2} from {3} where stat_date='{4}' ".format(x,y,z,q,t1)
CVR_DATA_yesterday = con_sql(sql_cid)[0]
return CVR_DATA_yesterday
#获取最近5天的数据
def chi_DATA_recently_all(x,y,z,t1,t2):
sql_cid = "select AVG({0}),AVG({1}) from {2} \
where stat_date >= '{3}' and stat_date < '{4}' ".format(x,y,z,t1,t2)
CVR_DATA_recently = con_sql(sql_cid)[0]
return CVR_DATA_recently
def chi_DATA_yesterday_all(x,y,z,t1):
sql_cid = "select {0},{1} from {2} where stat_date='{3}' ".format(x,y,z,t1)
CVR_DATA_yesterday = con_sql(sql_cid)[0]
return CVR_DATA_yesterday
#整理数据
def data_cal(x,y):
x_a = [x[0], x[1] - x[0]]
y_a=[y[0], y[1] - y[0]]
a_df=pd.DataFrame({'原':x_a,'测':y_a})
return a_df
def chi_cal(data):
data['共计'] = data.apply(lambda x: x.sum(), axis=1)
data.loc['共计'] = data.apply(lambda x: x.sum())
t1=data.iloc[0]
t2=data.iloc[1]
t11_count=t1[0]
t12_count=t1[1]
t21_count=t2[0]
t22_count=t2[1]
###理论值计算
temp1=data['共计']
rate1=temp1[0]/temp1[2]
rate2=temp1[1]/temp1[2]
temp2=data.iloc[2]
t11_theory=temp2[0]*rate1
t12_theory=temp2[1]*rate1
t21_theory = temp2[0]*rate2
t22_theory = temp2[1]*rate2
#计算卡方值
X=(((t11_count-t11_theory)**2)/t11_theory)+(((t12_count-t12_theory)**2)/t12_theory)+(((t21_count-t21_theory)**2)/t21_theory)+(((t22_count-t22_theory)**2)/t22_theory)
print("卡方值为:{}".format(X))
#计算自由度
v=(len(data)-1)*(data.columns.size-1)
#查表发现阈值为3.84
if X>3.84:
print("数据波动较大,超出正常波动范围,95%可能性属于指标【显著变化,请关注】")
print("\n")
else:
print("数据波动较小,95%可能性属于【正常波动】范围")
print("\n")
#老用户精准点击曝光数据(首页精选日记本列表on_click_diary_card)
print("【1】(精准曝光)首页精选日记本列表老用户CTR数据波动假设检验结果:")
chi_ctr_precise_old_recently=chi_DATA_recently("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",five_days,yesterday)
temp1_old=[float(str(Decimal(chi_ctr_precise_old_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctr_precise_old_recently))]
chi_ctr_precise_old_yesterday=chi_DATA_yesterday("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",yesterday)
temp2_old=[float(chi_ctr_precise_old_yesterday[i]) for i in range(len(chi_ctr_precise_old_yesterday))]
ctr_tst_old=data_cal(temp1_old,temp2_old)
chi_cal(ctr_tst_old)
#新用户精准点击曝光数据(首页精选日记本列表on_click_diary_card)
print("【2】(精准曝光)首页精选日记本列表新用户CTR数据波动假设检验结果:")
chi_ctr_precise_new_recently=chi_DATA_recently("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all_precise","on_click_diary_card",five_days,yesterday)
temp1_new=[float(str(Decimal(chi_ctr_precise_new_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctr_precise_new_recently))]
chi_ctr_precise_new_yesterday=chi_DATA_yesterday("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all_precise","on_click_diary_card",yesterday)
temp2_new=[float(chi_ctr_precise_new_yesterday[i]) for i in range(len(chi_ctr_precise_new_yesterday))]
ctr_tst_new=data_cal(temp1_new,temp2_new)
chi_cal(ctr_tst_new)
#老用户美购转化数据
print("【3】老用户CVR数据波动假设检验结果:")
chi_cvr_old_recently=chi_DATA_recently_all("diary_meigou_oldUser","diary_clk_oldUser","diary_meigou_crv",five_days,yesterday)
cvr_old=[float(str(Decimal(chi_cvr_old_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_cvr_old_recently))]
chi_cvr_old_yesterday=chi_DATA_yesterday_all("diary_meigou_oldUser","diary_clk_oldUser","diary_meigou_crv",yesterday)
cvr_old2=[float(chi_cvr_old_yesterday[i]) for i in range(len(chi_cvr_old_yesterday))]
cvr_tst_old=data_cal(cvr_old,cvr_old2)
chi_cal(cvr_tst_old)
#老用户美购转化数据
print("【4】新用户CVR数据波动假设检验结果:")
chi_cvr_new_recently=chi_DATA_recently_all("diary_meigou_newUser","diary_clk_newUser","diary_meigou_crv",five_days,yesterday)
cvr_new=[float(str(Decimal(chi_cvr_new_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_cvr_new_recently))]
chi_cvr_new_yesterday=chi_DATA_yesterday_all("diary_meigou_newUser","diary_clk_newUser","diary_meigou_crv",yesterday)
cvr_new2=[float(chi_cvr_new_yesterday[i]) for i in range(len(chi_cvr_new_yesterday))]
cvr_tst_new=data_cal(cvr_new,cvr_new2)
chi_cal(cvr_tst_new)
#老用户美购转化数据
print("【5】老用户CT-CVR数据波动假设检验结果:")
chi_ctcvr_old_recently=chi_DATA_recently_all("diary_meigou_oldUser","diary_exp_oldUser","diary_meigou_crv",five_days,yesterday)
ctcvr_old=[float(str(Decimal(chi_ctcvr_old_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctcvr_old_recently))]
chi_ctcvr_old_yesterday=chi_DATA_yesterday_all("diary_meigou_oldUser","diary_exp_oldUser","diary_meigou_crv",yesterday)
ctcvr_old2=[float(chi_ctcvr_old_yesterday[i]) for i in range(len(chi_ctcvr_old_yesterday))]
ctcvr_tst_old=data_cal(ctcvr_old,ctcvr_old2)
chi_cal(ctcvr_tst_old)
#老用户美购转化数据
print("【6】新用户CT-CVR数据波动假设检验结果:")
chi_ctcvr_new_recently=chi_DATA_recently_all("diary_meigou_newUser","diary_exp_newUser","diary_meigou_crv",five_days,yesterday)
ctcvr_new=[float(str(Decimal(chi_ctcvr_new_recently[i]).quantize(Decimal('0.0')))) for i in range(len(chi_ctcvr_new_recently))]
chi_ctcvr_new_yesterday=chi_DATA_yesterday_all("diary_meigou_newUser","diary_exp_newUser","diary_meigou_crv",yesterday)
ctcvr_new2=[float(chi_ctcvr_new_yesterday[i]) for i in range(len(chi_ctcvr_new_yesterday))]
ctcvr_tst_new=data_cal(ctcvr_new,ctcvr_new2)
chi_cal(ctcvr_tst_new)
# ###############数据波动大小检验##############
print("===============分割线,开始检测各个指标的5日内的方差和均值==================")
def get_var_data1(x,y,z,t1):
sql_cid = "select {0}/{1} from {2} \
where stat_date >= '{3}' ".format(x,y,z,t1)
CVR_DATA_recently = con_sql(sql_cid)
return CVR_DATA_recently
def get_var_data2(x,y,z,q,t1):
sql_cid = "select ({0}+{1})/{2} from {3} \
where stat_date >= '{4}' ".format(x,y,z,q,t1)
CVR_DATA_recently = con_sql(sql_cid)
return CVR_DATA_recently
def collect_data(data):
tt = [float(data[i][0])*100 for i in range(len(data))]
return tt
var_ctcvr_old_data=get_var_data1("diary_meigou_oldUser","diary_exp_oldUser","diary_meigou_crv",five_days)
var_ctcvr_old_D=collect_data(var_ctcvr_old_data)
var_ctcvr_old=np.var(var_ctcvr_old_D)
mean_var_ctcvr_old=np.mean(var_ctcvr_old_D)
print("【1-1】老用户CT-CVR数据波动5日内方差检验结果:{}".format(var_ctcvr_old))
print("【1-2】老用户CT-CVR数据波动5日内均值:{}%".format(mean_var_ctcvr_old))
print("\n")
var_ctcvr_new_data=get_var_data1("diary_meigou_newUser","diary_exp_newUser","diary_meigou_crv",five_days)
var_ctcvr_new_D=collect_data(var_ctcvr_new_data)
var_ctcvr_new=np.var(var_ctcvr_new_D)
mean_var_ctcvr_new=np.mean(var_ctcvr_new_D)
print("【2-1】新用户CT-CVR数据波动5日内方差检验结果:{}".format(var_ctcvr_new))
print("【2-2】新用户CT-CVR数据波动5日内均值:{}%".format(mean_var_ctcvr_new))
print("\n")
var_cvr_old_data=get_var_data1("diary_meigou_oldUser","diary_clk_oldUser","diary_meigou_crv",five_days)
var_cvr_old_D=collect_data(var_cvr_old_data)
var_cvr_old=np.var(var_cvr_old_D)
mean_var_cvr_old=np.mean(var_cvr_old_D)
print("【3-1】老用户CVR数据波动5日内方差检验结果:{}".format(var_cvr_old))
print("【3-2】老用户CVR数据波动5日内均值:{}%".format(mean_var_cvr_old))
print("\n")
#
var_cvr_new_data=get_var_data1("diary_meigou_newUser","diary_clk_newUser","diary_meigou_crv",five_days)
var_cvr_new_D=collect_data(var_cvr_new_data)
var_cvr_new=np.var(var_cvr_new_D)
mean_var_cvr_new=np.mean(var_cvr_new_D)
print("【4-1】新用户CVR数据波动5日内方差检验结果:{}".format(var_cvr_new))
print("【4-2】新用户CVR数据波动5日内均值:{}%".format(mean_var_cvr_new))
print("\n")
var_ctr_old_data=get_var_data2("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all","on_click_diary_card",five_days)
var_ctr_old_D=collect_data(var_ctr_old_data)
var_ctr_old=np.var(var_cvr_old_D)
mean_var_ctr_old=np.mean(var_ctr_old_D)
print("【5-1】老用户CTR数据波动5日内方差检验结果:{}".format(var_ctr_old))
print("【5-2】老用户CTR数据波动5日内均值:{}%".format(mean_var_ctr_old))
print("\n")
var_ctr_new_data=get_var_data2("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all","on_click_diary_card",five_days)
var_ctr_new_D=collect_data(var_ctr_new_data)
var_ctr_new=np.var(var_ctr_new_D)
mean_var_ctr_new=np.mean(var_ctr_new_D)
print("【6-1】新用户CTR数据波动5日内方差检验结果:{}".format(var_ctr_new))
print("【6-2】新用户CTR数据波动5日内均值:{}%".format(mean_var_ctr_new))
print("\n")
var_ctr_new_precise_data=get_var_data2("clk_count_newUser_all_a","clk_count_newUser_all_b","imp_count_newUser_all_precise","on_click_diary_card",five_days)
var_ctr_new_precise_D=collect_data(var_ctr_new_precise_data)
var_ctr_new_precise=np.var(var_ctr_new_precise_D)
mean_var_ctr_new_precise=np.mean(var_ctr_new_precise_D)
print("【7-1】新用户精准曝光CTR数据波动5日内方差检验结果:{}".format(var_ctr_new_precise))
print("【7-2】新用户精准曝光CTR数据波动5日内均值:{}%".format(mean_var_ctr_new_precise))
print("\n")
var_ctr_old_precise_data=get_var_data2("clk_count_oldUser_all_a","clk_count_oldUser_all_b","imp_count_oldUser_all_precise","on_click_diary_card",five_days)
var_ctr_old_precise_D=collect_data(var_ctr_old_precise_data)
var_ctr_old_precise=np.var(var_ctr_old_precise_D)
mean_var_ctr_old_precise=np.mean(var_ctr_old_precise_D)
print("【8-1】老用户精准曝光CTR数据波动5日内方差检验结果:{}".format(var_ctr_old_precise))
print("【8-2】老用户精准曝光CTR数据波动5日内均值:{}%".format(mean_var_ctr_old_precise))
print("\n")
# print("============================分割线===================================")
#根据新老用户进行区分
# print("============================新用户各指标假设检验结果分析===================================")
# #新用户cvr假设检验
# print("【1】新用户CVR假设检验结果:")
# crv_new_ttest1=t_test(x_crv_new,y_crv_new)
# #新用户ct_cvr假设检验
# print("【3】新用户CT-CVR假设检验结果:")
# ctcrv_new_ttest1=t_test(x_ctcrv_new,y_ctcrv_new)
# #新用户ctr假设检验
# print("【5】新用户CTR假设检验结果:")
# ctr_new_ttest1=t_test(x_ctr_new,y_ctr_new)
# #新用户ctr(on_click_diary_card)假设检验
# print("【7】新用户CTR假设检验(日记本列表ctr)(on_click_diary_card)结果:")
# ctr_new_o_ttest1=t_test(x_ctr_new_o,y_ctr_new_o)
#
#
#
#
#
# print("============================老用户各指标假设检验结果分析===================================")
# #老用户cvr假设检验
# print("【2】老用户CVR假设检验结果:")
# crv_old_ttest1=t_test(x_crv_old,y_crv_old)
# # #老用户ct_cvr假设检验
# print("【4】老用户CT-CVR假设检验结果:")
# ctcrv_old_ttest1=t_test(x_ctcrv_old,y_ctcrv_old)
# #老用户ctr假设检验
# print("【6】老用户CTR假设检验结果:")
# ctr_old_ttest1=t_test(x_ctr_old,y_ctr_old)
# #老用户ctr(on_click_diary_card)假设检验
# print("【8】老用户CTR假设检验(日记本列表ctr)(on_click_diary_card)结果:")
# ctr_old_o_ttest1=t_test(x_ctr_old_o,y_ctr_old_o)
##发送邮件
# my_sender='gaoyazhe@igengmei.com'
# my_pass = 'VCrKTui99a7ALhiK'
# my_user1='wangzhiwei@igengmei.com'
# def mail():
# ret = True
# try:
# text = "Hi!\nHow are you?\nHere is the link you wanted:\nhttp://www.baidu.com"
# msg = MIMEText(text, 'plain', 'utf-8')
# msg['From'] = formataddr(["王志伟", my_sender])
# msg['To'] = my_user1
# msg['Subject'] = str(datetime.date.today()) + "-esmm多目标模型训练指标统计"
# server = smtplib.SMTP_SSL("smtp.exmail.qq.com", 465)
# server.login(my_sender, my_pass)
# server.sendmail(my_sender, [my_user1], msg.as_string())
# server.quit()
# except Exception:
# ret=False
# return ret
#
# ret=mail()
# if ret:
# print("邮件发送成功")
# else:
# print("邮件发送失败")
# chi_cvr_new=
# chi_cvr_old=
#
# chi_ctcvr_new=
# chi_ctcvr_old=
#
#
#
# def chi_cal(data):