1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import pandas as pd
import pymysql
import datetime
def con_sql(db,sql):
cursor = db.cursor()
cursor.execute(sql)
result = cursor.fetchall()
df = pd.DataFrame(list(result))
db.close()
return df
def multi_hot(df,column,n):
df[column] = df[column].fillna("lost_na")
app_list_value = [i.split(",") for i in df[column].unique()]
app_list_unique = []
for i in app_list_value:
app_list_unique.extend(i)
app_list_unique = list(set(app_list_unique))
number = len(app_list_unique)
app_list_map = dict(zip(app_list_unique, list(range(n, number + n))))
df[column] = df[column].apply(app_list_func, args=(app_list_map,))
return number,app_list_map
def get_data():
db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select max(stat_date) from {}".format(train_data_set)
validate_date = con_sql(db, sql)[0].values.tolist()[0]
print("validate_date:" + validate_date)
temp = datetime.datetime.strptime(validate_date, "%Y-%m-%d")
start = (temp - datetime.timedelta(days=100)).strftime("%Y-%m-%d")
print(start)
db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer," \
"u.channel,c.top,e.device_id,cut.time,dl.app_list,e.diary_service_id,feat.level3_ids,feat.level2," \
"wiki.tag,question.tag,search.tag,budan.tag,order_tag.tag,sixin.tag,cart.tag " \
"from {} e left join user_feature u on e.device_id = u.device_id " \
"left join cid_type_top c on e.device_id = c.device_id " \
"left join cid_time_cut cut on e.cid_id = cut.cid " \
"left join device_app_list dl on e.device_id = dl.device_id " \
"left join diary_feat feat on e.cid_id = feat.diary_id " \
"left join wiki_tag wiki on e.device_id = wiki.device_id " \
"left join question_tag question on e.device_id = question.device_id " \
"left join search_tag search on e.device_id = search.device_id " \
"left join budan_tag budan on e.device_id = budan.device_id " \
"left join order_tag on e.device_id = order_tag.device_id " \
"left join sixin_tag sixin on e.device_id = sixin.device_id " \
"left join cart_tag cart on e.device_id = cart.device_id " \
"where e.stat_date >= '{}'".format(train_data_set, start)
# 上面order_tag 表不要简称为order,因为order是mysql的保留字,例如order by
df = con_sql(db, sql)
# print(df.shape)
df = df.rename(columns={0: "y", 1: "z", 2: "stat_date", 3: "ucity_id", 4: "clevel2_id", 5: "ccity_name",
6: "device_type", 7: "manufacturer", 8: "channel", 9: "top", 10: "device_id",
11: "time", 12: "app_list", 13: "service_id", 14: "level3_ids", 15: "level2",
16:"tag1",17:"tag2",18:"tag3",19:"tag4",20:"tag5",21:"tag6",22:"tag7"})
db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select level2_id,treatment_method,price_min,price_max,treatment_time,maintain_time,recover_time " \
"from train_Knowledge_network_data"
knowledge = con_sql(db, sql)
knowledge = knowledge.rename(columns={0: "level2", 1: "method", 2: "min", 3: "max",
4: "treatment_time", 5: "maintain_time", 6: "recover_time"})
knowledge["level2"] = knowledge["level2"].astype("str")
df = pd.merge(df, knowledge, on='level2', how='left')
df = df.drop("level2", axis=1)
service_id = tuple(df["service_id"].unique())
db = pymysql.connect(host='172.16.30.143', port=3306, user='work',
passwd='BJQaT9VzDcuPBqkd', db='zhengxing')
sql = "select s.id,d.hospital_id from api_service s left join api_doctor d on s.doctor_id = d.id " \
"where s.id in {}".format(service_id)
hospital = con_sql(db, sql)
hospital = hospital.rename(columns={0: "service_id", 1: "hospital_id"})
# print(hospital.head())
# print("hospital")
# print(hospital.count())
hospital["service_id"] = hospital["service_id"].astype("str")
df = pd.merge(df, hospital, on='service_id', how='left')
df = df.drop("service_id", axis=1)
print(df.count())
print("before")
print(df.shape)
df = df.drop_duplicates(["ucity_id", "clevel2_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "stat_date", "app_list", "hospital_id", "level3_ids"])
print("after")
print(df.shape)
app_list_number, app_list_map = multi_hot(df, "app_list", 2)
level2_number, level2_map = multi_hot(df, "clevel2_id", 2 + app_list_number)
level3_number, level3_map = multi_hot(df, "level3_ids", 2 + app_list_number + level2_number)
for i in ["tag1","tag2","tag3","tag4","tag5","tag6","tag7"]:
df[i] = df[i].fillna("lost_na")
df[i] = df[i].apply(app_list_func, args=(level2_map,))
unique_values = []
features = ["ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "stat_date", "hospital_id",
"method", "min", "max", "treatment_time", "maintain_time", "recover_time"]
for i in features:
df[i] = df[i].astype("str")
df[i] = df[i].fillna("lost")
# 下面这行代码是为了区分不同的列中有相同的值
df[i] = df[i] + i
unique_values.extend(list(df[i].unique()))
temp = list(range(2 + app_list_number + level2_number + level3_number,
2 + app_list_number + level2_number + level3_number + len(unique_values)))
value_map = dict(zip(unique_values, temp))
df = df.drop("device_id", axis=1)
# TODO 上线后把最近一天的数据集放进训练集,这样用户的正、负反馈能及时获取
train = df
test = df[df["stat_date"] == validate_date + "stat_date"]
for i in ["ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "stat_date", "hospital_id",
"method", "min", "max", "treatment_time", "maintain_time", "recover_time"]:
train[i] = train[i].map(value_map)
test[i] = test[i].map(value_map)
# print("train shape")
# print(train.shape)
print("test shape")
print(test.shape)
write_csv(train, "tr", 100000)
write_csv(test, "va", 80000)
return validate_date, value_map, app_list_map, level2_map, level3_map
def app_list_func(x,l):
b = x.split(",")
e = []
for i in b:
if i in l.keys():
e.append(l[i])
else:
e.append(0)
return ",".join([str(j) for j in e])
def write_csv(df,name,n):
for i in range(0, df.shape[0], n):
if i == 0:
temp = df.iloc[0:n]
elif i + n > df.shape[0]:
temp = df.iloc[i:]
else:
temp = df.iloc[i:i + n]
temp.to_csv(path + name+ "/{}_{}.csv".format(name,i), index=False)
def get_predict(date,value_map,app_list_map,level2_map,level3_map):
db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name," \
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time," \
"dl.app_list,e.hospital_id,feat.level3_ids,feat.level2," \
"wiki.tag,question.tag,search.tag,budan.tag,order_tag.tag,sixin.tag,cart.tag " \
"from esmm_pre_data e left join user_feature u on e.device_id = u.device_id " \
"left join cid_type_top c on e.device_id = c.device_id " \
"left join cid_time_cut cut on e.cid_id = cut.cid " \
"left join device_app_list dl on e.device_id = dl.device_id " \
"left join diary_feat feat on e.cid_id = feat.diary_id " \
"left join wiki_tag wiki on e.device_id = wiki.device_id " \
"left join question_tag question on e.device_id = question.device_id " \
"left join search_tag search on e.device_id = search.device_id " \
"left join budan_tag budan on e.device_id = budan.device_id " \
"left join order_tag on e.device_id = order_tag.device_id " \
"left join sixin_tag sixin on e.device_id = sixin.device_id " \
"left join cart_tag cart on e.device_id = cart.device_id"
df = con_sql(db, sql)
df = df.rename(columns={0: "y", 1: "z", 2: "label", 3: "ucity_id", 4: "clevel2_id", 5: "ccity_name",
6: "device_type", 7: "manufacturer", 8: "channel", 9: "top", 10: "device_id",
11: "cid_id", 12: "time", 13: "app_list", 14: "hospital_id", 15: "level3_ids",
16: "level2",17:"tag1",18:"tag2",19:"tag3",20:"tag4",21:"tag5",22:"tag6",23:"tag7"})
db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select level2_id,treatment_method,price_min,price_max,treatment_time,maintain_time,recover_time " \
"from train_Knowledge_network_data"
knowledge = con_sql(db, sql)
knowledge = knowledge.rename(columns={0: "level2", 1: "method", 2: "min", 3: "max",
4: "treatment_time", 5: "maintain_time", 6: "recover_time"})
knowledge["level2"] = knowledge["level2"].astype("str")
df = pd.merge(df, knowledge, on='level2', how='left')
df = df.drop("level2", axis=1)
df = df.drop_duplicates(["ucity_id", "clevel2_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "app_list", "hospital_id", "level3_ids"])
df["stat_date"] = date
print(df.head(6))
df["app_list"] = df["app_list"].fillna("lost_na")
df["app_list"] = df["app_list"].apply(app_list_func, args=(app_list_map,))
df["clevel2_id"] = df["clevel2_id"].fillna("lost_na")
df["clevel2_id"] = df["clevel2_id"].apply(app_list_func, args=(level2_map,))
df["level3_ids"] = df["level3_ids"].fillna("lost_na")
df["level3_ids"] = df["level3_ids"].apply(app_list_func, args=(level3_map,))
for i in ["tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7"]:
df[i] = df[i].fillna("lost_na")
df[i] = df[i].apply(app_list_func, args=(level2_map,))
# print("predict shape")
# print(df.shape)
df["uid"] = df["device_id"]
df["city"] = df["ucity_id"]
features = ["ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "stat_date", "hospital_id",
"method", "min", "max", "treatment_time", "maintain_time", "recover_time"]
for i in features:
df[i] = df[i].astype("str")
df[i] = df[i].fillna("lost")
df[i] = df[i] + i
native_pre = df[df["label"] == 0]
native_pre = native_pre.drop("label", axis=1)
nearby_pre = df[df["label"] == 1]
nearby_pre = nearby_pre.drop("label", axis=1)
for i in ["ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "stat_date", "hospital_id",
"method", "min", "max", "treatment_time", "maintain_time", "recover_time"]:
native_pre[i] = native_pre[i].map(value_map)
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
native_pre[i] = native_pre[i].fillna(0)
nearby_pre[i] = nearby_pre[i].map(value_map)
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
nearby_pre[i] = nearby_pre[i].fillna(0)
print("native")
print(native_pre.shape)
native_pre[["uid", "city", "cid_id"]].to_csv(path + "native.csv", index=False)
write_csv(native_pre, "native", 200000)
print("nearby")
print(nearby_pre.shape)
nearby_pre[["uid", "city", "cid_id"]].to_csv(path + "nearby.csv", index=False)
write_csv(nearby_pre, "nearby", 160000)
if __name__ == '__main__':
train_data_set = "esmm_train_data_dur"
path = "/home/gmuser/esmm/"
date, value, app_list, level2, level3 = get_data()
get_predict(date, value, app_list, level2, level3)