1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
#coding=utf-8
import pymysql
import os
import json
from datetime import date, timedelta
import tensorflow as tf
import time
import pandas as pd
import datetime
#################### CMD Arguments ####################
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer("dist_mode", 0, "distribuion mode {0-loacal, 1-single_dist, 2-multi_dist}")
tf.app.flags.DEFINE_string("ps_hosts", '', "Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("worker_hosts", '', "Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("job_name", '', "One of 'ps', 'worker'")
tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")
tf.app.flags.DEFINE_integer("num_threads", 16, "Number of threads")
tf.app.flags.DEFINE_integer("feature_size", 0, "Number of features")
tf.app.flags.DEFINE_integer("field_size", 0, "Number of common fields")
tf.app.flags.DEFINE_integer("embedding_size", 32, "Embedding size")
tf.app.flags.DEFINE_integer("num_epochs", 10, "Number of epochs")
tf.app.flags.DEFINE_integer("batch_size", 64, "Number of batch size")
tf.app.flags.DEFINE_integer("log_steps", 1000, "save summary every steps")
tf.app.flags.DEFINE_float("learning_rate", 0.0005, "learning rate")
tf.app.flags.DEFINE_float("l2_reg", 0.0001, "L2 regularization")
tf.app.flags.DEFINE_string("loss_type", 'log_loss', "loss type {square_loss, log_loss}")
tf.app.flags.DEFINE_float("ctr_task_wgt", 0.5, "loss weight of ctr task")
tf.app.flags.DEFINE_string("optimizer", 'Adam', "optimizer type {Adam, Adagrad, GD, Momentum}")
tf.app.flags.DEFINE_string("deep_layers", '256,128,64', "deep layers")
tf.app.flags.DEFINE_string("dropout", '0.5,0.5,0.5', "dropout rate")
tf.app.flags.DEFINE_boolean("batch_norm", False, "perform batch normaization (True or False)")
tf.app.flags.DEFINE_float("batch_norm_decay", 0.9, "decay for the moving average(recommend trying decay=0.9)")
tf.app.flags.DEFINE_string("hdfs_dir", '', "hdfs dir")
tf.app.flags.DEFINE_string("local_dir", '', "local dir")
tf.app.flags.DEFINE_string("dt_dir", '', "data dt partition")
tf.app.flags.DEFINE_string("model_dir", '', "model check point dir")
tf.app.flags.DEFINE_string("servable_model_dir", '', "export servable model for TensorFlow Serving")
tf.app.flags.DEFINE_string("task_type", 'train', "task type {train, infer, eval, export}")
tf.app.flags.DEFINE_boolean("clear_existing_model", False, "clear existing model or not")
def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
print('Parsing', filenames)
def _parse_fn(record):
features = {
"y": tf.FixedLenFeature([], tf.float32),
"z": tf.FixedLenFeature([], tf.float32),
"ids": tf.FixedLenFeature([FLAGS.field_size], tf.int64),
"app_list": tf.VarLenFeature(tf.int64),
"level2_list": tf.VarLenFeature(tf.int64),
"level3_list": tf.VarLenFeature(tf.int64),
"tag1_list": tf.VarLenFeature(tf.int64),
"tag2_list": tf.VarLenFeature(tf.int64),
"tag3_list": tf.VarLenFeature(tf.int64),
"tag4_list": tf.VarLenFeature(tf.int64),
"tag5_list": tf.VarLenFeature(tf.int64),
"tag6_list": tf.VarLenFeature(tf.int64),
"tag7_list": tf.VarLenFeature(tf.int64),
"search_tag2_list": tf.VarLenFeature(tf.int64),
"search_tag3_list": tf.VarLenFeature(tf.int64),
"uid": tf.VarLenFeature(tf.string),
"city": tf.VarLenFeature(tf.string),
"cid_id": tf.VarLenFeature(tf.string)
}
parsed = tf.parse_single_example(record, features)
y = parsed.pop('y')
z = parsed.pop('z')
return parsed, {"y": y, "z": z}
# Extract lines from input files using the Dataset API, can pass one filename or filename list
# dataset = tf.data.TFRecordDataset(filenames).map(_parse_fn, num_parallel_calls=8).prefetch(500000) # multi-thread pre-process then prefetch
# Randomizes input using a window of 256 elements (read into memory)
# if perform_shuffle:
# dataset = dataset.shuffle(buffer_size=256)
# epochs from blending together.
# dataset = dataset.repeat(num_epochs)
# dataset = dataset.batch(batch_size) # Batch size to use
files = tf.data.Dataset.list_files(filenames)
dataset = files.apply(
tf.data.experimental.parallel_interleave(
lambda file: tf.data.TFRecordDataset(file),
cycle_length=8
)
)
dataset = dataset.apply(tf.data.experimental.map_and_batch(map_func=_parse_fn, batch_size=batch_size, num_parallel_calls=8))
dataset = dataset.prefetch(10000)
# dataset = dataset.padded_batch(batch_size, padded_shapes=({"feeds_ids": [None], "feeds_vals": [None], "title_ids": [None]}, [None])) #不定长补齐
#return dataset.make_one_shot_iterator()
iterator = dataset.make_one_shot_iterator()
batch_features, batch_labels = iterator.get_next()
#return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels
#print("-"*100)
#print(batch_features,batch_labels)
return batch_features, batch_labels
def model_fn(features, labels, mode, params):
"""Bulid Model function f(x) for Estimator."""
#------hyperparameters----
field_size = params["field_size"]
feature_size = params["feature_size"]
embedding_size = params["embedding_size"]
l2_reg = params["l2_reg"]
learning_rate = params["learning_rate"]
#optimizer = params["optimizer"]
layers = list(map(int, params["deep_layers"].split(',')))
dropout = list(map(float, params["dropout"].split(',')))
ctr_task_wgt = params["ctr_task_wgt"]
common_dims = field_size*embedding_size
#------bulid weights------
Feat_Emb = tf.get_variable(name='embeddings', shape=[feature_size, embedding_size], initializer=tf.glorot_normal_initializer())
feat_ids = features['ids']
app_list = features['app_list']
level2_list = features['level2_list']
level3_list = features['level3_list']
tag1_list = features['tag1_list']
tag2_list = features['tag2_list']
tag3_list = features['tag3_list']
tag4_list = features['tag4_list']
tag5_list = features['tag5_list']
tag6_list = features['tag6_list']
tag7_list = features['tag7_list']
search_tag2_list = features['search_tag2_list']
search_tag3_list = features['search_tag3_list']
uid = features['uid']
city = features['city']
cid_id = features['cid_id']
if FLAGS.task_type != "infer":
y = labels['y']
z = labels['z']
#------build f(x)------
with tf.variable_scope("Shared-Embedding-layer"):
embedding_id = tf.nn.embedding_lookup(Feat_Emb,feat_ids)
app_id = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=app_list, sp_weights=None, combiner="sum")
level2 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=level2_list, sp_weights=None, combiner="sum")
level3 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=level3_list, sp_weights=None, combiner="sum")
tag1 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag1_list, sp_weights=None, combiner="sum")
tag2 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag2_list, sp_weights=None, combiner="sum")
tag3 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag3_list, sp_weights=None, combiner="sum")
tag4 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag4_list, sp_weights=None, combiner="sum")
tag5 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag5_list, sp_weights=None, combiner="sum")
tag6 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag6_list, sp_weights=None, combiner="sum")
tag7 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=tag7_list, sp_weights=None, combiner="sum")
search_tag2 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=search_tag2_list, sp_weights=None, combiner="sum")
search_tag3 = tf.nn.embedding_lookup_sparse(Feat_Emb, sp_ids=search_tag3_list, sp_weights=None, combiner="sum")
# x_concat = tf.reshape(embedding_id,shape=[-1, common_dims]) # None * (F * K)
x_concat = tf.concat([tf.reshape(embedding_id, shape=[-1, common_dims]), app_id, level2, level3, tag1,
tag2, tag3, tag4, tag5, tag6, tag7,search_tag2,search_tag3], axis=1)
uid = tf.sparse.to_dense(uid,default_value="")
city = tf.sparse.to_dense(city,default_value="")
cid_id = tf.sparse.to_dense(cid_id,default_value="")
with tf.name_scope("CVR_Task"):
if mode == tf.estimator.ModeKeys.TRAIN:
train_phase = True
else:
train_phase = False
x_cvr = x_concat
for i in range(len(layers)):
x_cvr = tf.contrib.layers.fully_connected(inputs=x_cvr, num_outputs=layers[i], \
weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='cvr_mlp%d' % i)
if FLAGS.batch_norm:
x_cvr = batch_norm_layer(x_cvr, train_phase=train_phase, scope_bn='cvr_bn_%d' %i) #放在RELU之后 https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
if mode == tf.estimator.ModeKeys.TRAIN:
x_cvr = tf.nn.dropout(x_cvr, keep_prob=dropout[i]) #Apply Dropout after all BN layers and set dropout=0.8(drop_ratio=0.2)
y_cvr = tf.contrib.layers.fully_connected(inputs=x_cvr, num_outputs=1, activation_fn=tf.identity, \
weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='cvr_out')
y_cvr = tf.reshape(y_cvr,shape=[-1])
with tf.name_scope("CTR_Task"):
if mode == tf.estimator.ModeKeys.TRAIN:
train_phase = True
else:
train_phase = False
x_ctr = x_concat
for i in range(len(layers)):
x_ctr = tf.contrib.layers.fully_connected(inputs=x_ctr, num_outputs=layers[i], \
weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='ctr_mlp%d' % i)
if FLAGS.batch_norm:
x_ctr = batch_norm_layer(x_ctr, train_phase=train_phase, scope_bn='ctr_bn_%d' %i) #放在RELU之后 https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
if mode == tf.estimator.ModeKeys.TRAIN:
x_ctr = tf.nn.dropout(x_ctr, keep_prob=dropout[i]) #Apply Dropout after all BN layers and set dropout=0.8(drop_ratio=0.2)
y_ctr = tf.contrib.layers.fully_connected(inputs=x_ctr, num_outputs=1, activation_fn=tf.identity, \
weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='ctr_out')
y_ctr = tf.reshape(y_ctr,shape=[-1])
with tf.variable_scope("MTL-Layer"):
pctr = tf.sigmoid(y_ctr)
pcvr = tf.sigmoid(y_cvr)
pctcvr = pctr*pcvr
predictions = {"pctcvr": pctcvr, "uid": uid, "city": city, "cid_id": cid_id}
export_outputs = {tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.PredictOutput(predictions)}
# Provide an estimator spec for `ModeKeys.PREDICT`
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
export_outputs=export_outputs)
if FLAGS.task_type != "infer":
#------bulid loss------
ctr_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y_ctr, labels=y))
#cvr_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y_ctcvr, labels=z))
cvr_loss = tf.reduce_mean(tf.losses.log_loss(predictions=pctcvr, labels=z))
loss = ctr_task_wgt * ctr_loss + (1 -ctr_task_wgt) * cvr_loss + l2_reg * tf.nn.l2_loss(Feat_Emb)
tf.summary.scalar('ctr_loss', ctr_loss)
tf.summary.scalar('cvr_loss', cvr_loss)
# Provide an estimator spec for `ModeKeys.EVAL`
eval_metric_ops = {
"CTR_AUC": tf.metrics.auc(y, pctr),
#"CTR_F1": tf.contrib.metrics.f1_score(y,pctr),
#"CTR_Precision": tf.metrics.precision(y,pctr),
#"CTR_Recall": tf.metrics.recall(y,pctr),
"CVR_AUC": tf.metrics.auc(z, pcvr),
"CTCVR_AUC": tf.metrics.auc(z, pctcvr)
}
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
eval_metric_ops=eval_metric_ops)
#------bulid optimizer------
if FLAGS.optimizer == 'Adam':
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8)
elif FLAGS.optimizer == 'Adagrad':
optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate, initial_accumulator_value=1e-8)
elif FLAGS.optimizer == 'Momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.95)
elif FLAGS.optimizer == 'ftrl':
optimizer = tf.train.FtrlOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
# Provide an estimator spec for `ModeKeys.TRAIN` modes
if mode == tf.estimator.ModeKeys.TRAIN:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op)
def batch_norm_layer(x, train_phase, scope_bn):
bn_train = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=True, reuse=None, scope=scope_bn)
bn_infer = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=False, reuse=True, scope=scope_bn)
z = tf.cond(tf.cast(train_phase, tf.bool), lambda: bn_train, lambda: bn_infer)
return z
def set_dist_env():
if FLAGS.dist_mode == 1: # 本地分布式测试模式1 chief, 1 ps, 1 evaluator
ps_hosts = FLAGS.ps_hosts.split(',')
chief_hosts = FLAGS.chief_hosts.split(',')
task_index = FLAGS.task_index
job_name = FLAGS.job_name
print('ps_host', ps_hosts)
print('chief_hosts', chief_hosts)
print('job_name', job_name)
print('task_index', str(task_index))
# 无worker参数
tf_config = {
'cluster': {'chief': chief_hosts, 'ps': ps_hosts},
'task': {'type': job_name, 'index': task_index }
}
print(json.dumps(tf_config))
os.environ['TF_CONFIG'] = json.dumps(tf_config)
elif FLAGS.dist_mode == 2: # 集群分布式模式
ps_hosts = FLAGS.ps_hosts.split(',')
worker_hosts = FLAGS.worker_hosts.split(',')
chief_hosts = worker_hosts[0:1] # get first worker as chief
worker_hosts = worker_hosts[2:] # the rest as worker
task_index = FLAGS.task_index
job_name = FLAGS.job_name
print('ps_host', ps_hosts)
print('worker_host', worker_hosts)
print('chief_hosts', chief_hosts)
print('job_name', job_name)
print('task_index', str(task_index))
# use #worker=0 as chief
if job_name == "worker" and task_index == 0:
job_name = "chief"
# use #worker=1 as evaluator
if job_name == "worker" and task_index == 1:
job_name = 'evaluator'
task_index = 0
# the others as worker
if job_name == "worker" and task_index > 1:
task_index -= 2
tf_config = {
'cluster': {'chief': chief_hosts, 'worker': worker_hosts, 'ps': ps_hosts},
'task': {'type': job_name, 'index': task_index }
}
print(json.dumps(tf_config))
os.environ['TF_CONFIG'] = json.dumps(tf_config)
def main(file_path):
#------check Arguments------
if FLAGS.dt_dir == "":
FLAGS.dt_dir = (date.today() + timedelta(-1)).strftime('%Y%m%d')
FLAGS.model_dir = FLAGS.model_dir + FLAGS.dt_dir
#FLAGS.data_dir = FLAGS.data_dir + FLAGS.dt_dir
va_files = ["hdfs://172.16.32.4:8020/strategy/esmm/va/part-r-00000"]
# if FLAGS.clear_existing_model:
# try:
# shutil.rmtree(FLAGS.model_dir)
# except Exception as e:
# print(e, "at clear_existing_model")
# else:
# print("existing model cleaned at %s" % FLAGS.model_dir)
# set_dist_env()
#------bulid Tasks------
model_params = {
"field_size": FLAGS.field_size,
"feature_size": FLAGS.feature_size,
"embedding_size": FLAGS.embedding_size,
"learning_rate": FLAGS.learning_rate,
"l2_reg": FLAGS.l2_reg,
"deep_layers": FLAGS.deep_layers,
"dropout": FLAGS.dropout,
"ctr_task_wgt":FLAGS.ctr_task_wgt
}
config = tf.estimator.RunConfig().replace(session_config = tf.ConfigProto(device_count={'GPU':0, 'CPU':FLAGS.num_threads}),
log_step_count_steps=FLAGS.log_steps, save_summary_steps=FLAGS.log_steps)
Estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir=FLAGS.model_dir, params=model_params, config=config)
if FLAGS.task_type == 'train':
train_spec = tf.estimator.TrainSpec(input_fn=lambda: input_fn(file_path, num_epochs=FLAGS.num_epochs, batch_size=FLAGS.batch_size))
eval_spec = tf.estimator.EvalSpec(input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size), steps=None, start_delay_secs=1000, throttle_secs=1200)
result = tf.estimator.train_and_evaluate(Estimator, train_spec, eval_spec)
for key,value in sorted(result[0].items()):
print('%s: %s' % (key,value))
elif FLAGS.task_type == 'eval':
result = Estimator.evaluate(input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size))
for key,value in sorted(result.items()):
print('%s: %s' % (key,value))
elif FLAGS.task_type == 'infer':
preds = Estimator.predict(input_fn=lambda: input_fn(file_path, num_epochs=1, batch_size=FLAGS.batch_size), predict_keys=["pctcvr","uid","city","cid_id"])
result = []
for prob in preds:
result.append([str(prob["uid"][0]), str(prob["city"][0]), str(prob["cid_id"][0]), str(prob['pctcvr'])])
return result
elif FLAGS.task_type == 'export':
print("Not Implemented, Do It Yourself!")
def trans(x):
return str(x)[2:-1] if str(x)[0] == 'b' else x
def set_join(lst):
l = lst.unique().tolist()
r = [str(i) for i in l]
r =r[:500]
return ','.join(r)
def df_sort(result,queue_name):
df = pd.DataFrame(result, columns=["uid", "city", "cid_id", "pctcvr"])
# print(df.head(10))
df['uid1'] = df['uid'].apply(trans)
df['city1'] = df['city'].apply(trans)
df['cid_id1'] = df['cid_id'].apply(trans)
df2 = df.groupby(by=["uid1", "city1"]).apply(lambda x: x.sort_values(by="pctcvr", ascending=False)) \
.reset_index(drop=True).groupby(by=["uid1", "city1"]).agg({'cid_id1': set_join}).reset_index(drop=False)
df2.columns = ["device_id", "city_id", queue_name]
df2["time"] = str(datetime.datetime.now().strftime('%Y%m%d%H%M'))
return df2
def update_or_insert(df2,queue_name):
device_count = df2.shape[0]
con = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test', charset = 'utf8')
cur = con.cursor()
try:
for i in range(0, device_count):
query = """INSERT INTO esmm_device_diary_queue (device_id, city_id, time,%s) VALUES('%s', '%s', '%s', '%s') \
ON DUPLICATE KEY UPDATE device_id='%s', city_id='%s', time='%s', %s='%s'""" % (queue_name, df2.device_id[i],df2.city_id[i], df2.time[i], df2[queue_name][i], df2.device_id[i], df2.city_id[i], df2.time[i], queue_name, df2[queue_name][i])
cur.execute(query)
con.commit()
con.close()
print("insert or update sucess")
except Exception as e:
print(e)
if __name__ == "__main__":
b = time.time()
path = "hdfs://172.16.32.4:8020/strategy/esmm/"
tf.logging.set_verbosity(tf.logging.INFO)
if FLAGS.task_type == 'train':
print("train task")
tr_files = ["hdfs://172.16.32.4:8020/strategy/esmm/tr/part-r-00000"]
main(tr_files)
elif FLAGS.task_type == 'infer':
te_files = ["%s/part-r-00000" % FLAGS.hdfs_dir]
queue_name = te_files[0].split('/')[-2] + "_queue"
print(queue_name + " task")
result = main(te_files)
df = df_sort(result,queue_name)
update_or_insert(df,queue_name)
print("耗时(分钟):")
print((time.time()-b)/60)