temp_count.scala 42.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
package com.gmei

import java.io.Serializable
import java.text.SimpleDateFormat

import breeze.linalg.split
import com.gmei.WeafareStat.{defaultParams, parser}
import org.apache.spark.sql.{Row, SaveMode, SparkSession}
//import org.apache.spark.sql.{Row, SaveMode, SparkSession, TiContext}
import org.apache.log4j.{Level, Logger}
import scopt.OptionParser
import com.gmei.lib.AbstractParams
import com.github.nscala_time.time.Imports._
import java.text.SimpleDateFormat
import java.util.Date

import scala.util.parsing.json.JSON

object temp_count {

  Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
  Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)

  case class Params(env: String = "dev",
                    date: String = "2018-08-01"
                   ) extends AbstractParams[Params] with Serializable

  val defaultParams = Params()

  val parser = new OptionParser[Params]("Feed_EDA") {
    head("WeafareStat")
    opt[String]("env")
      .text(s"the databases environment you used")
      .action((x, c) => c.copy(env = x))
    opt[String] ("date")
      .text(s"the date you used")
      .action((x,c) => c.copy(date = x))
    note(
      """
        |For example, the following command runs this app on a tidb dataset:
        |
        | spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
      """.stripMargin +
        s"|   --env ${defaultParams.env}"
    )
  }

  def main(args: Array[String]): Unit = {
    parser.parse(args, defaultParams).map { param =>
      GmeiConfig.setup(param.env)
      val spark_env = GmeiConfig.getSparkSession()
      val sc = spark_env._2

//      val ti = new TiContext(sc)
      sc.sql("use jerry_prod")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "diary_video")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")


      val stat_date = GmeiConfig.getMinusNDate(1)
//      val stat_date = param.date
      //println(param.date)
      val partition_date = stat_date.replace("-","")
      val decive_id_oldUser = sc.sql(
        s"""
           |select distinct(device_id) as device_id
           |from online.ml_device_day_active_status
           |where active_type = '4'
           |and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
           |    ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
           |    ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
           |    ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
           |    ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
           |    ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
           |    ,'promotion_shike','promotion_julang_jl03','','unknown')
           |and partition_date ='${partition_date}'
         """.stripMargin
      )
      decive_id_oldUser.createOrReplaceTempView("device_id_old")


      val clk_count_oldUser = sc.sql(
        s"""
           |select '${stat_date}' as stat_date, count(jd.cid_id) as clk_count_oldUser
           |from data_feed_click jd inner join device_id_old
           |on jd.device_id = device_id_old.device_id
           |where  (jd.cid_type = 'diary' or jd.cid_type = 'diary_video')
           |and jd.device_id not in (select device_id from blacklist)
           |and jd.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
           |and jd.stat_date ='${stat_date}'
         """.stripMargin
      )

      val imp_count_oldUser = sc.sql(
        s"""
           |select '${stat_date}' as stat_date, count(cid_id) as imp_count_oldUser
           |from data_feed_exposure je inner join device_id_old
           |on je.device_id = device_id_old.device_id
           |where je.cid_type = 'diary'
           |and je.device_id not in (select device_id from blacklist)
           |and je.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
           |and je.stat_date ='${stat_date}'
         """.stripMargin
      )

      val clk_count_all = sc.sql(
        s"""
           |select '${stat_date}' as stat_date, count(cid_id) as clk_count_all
           |from data_feed_click
           |where  (cid_type = 'diary' or cid_type = 'diary_video')
           |and device_id not in (select device_id from blacklist)
           |and city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
           |and stat_date ='${stat_date}'
         """.stripMargin
      )

      val imp_count__all = sc.sql(
        s"""
           |select '${stat_date}' as stat_date, count(cid_id) as imp_count_all
           |from data_feed_exposure
           |where cid_type = 'diary'
           |and device_id not in (select device_id from blacklist)
           |and city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
           |and stat_date ='${stat_date}'
         """.stripMargin
      )

      val clk_count_oldUser_Contrast = sc.sql(
        s"""
           |select '${stat_date}' as stat_date, count(cid_id) as clk_count_oldUser_Contrast
           |from data_feed_click jd inner join device_id_old
           |on jd.device_id = device_id_old.device_id
           |where  (jd.cid_type = 'diary' or jd.cid_type = 'diary_video')
           |and jd.device_id regexp'1$$'
           |and jd.device_id not in (select device_id from blacklist)
           |and jd.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
           |and jd.stat_date ='${stat_date}'
         """.stripMargin
      )

      val imp_count_oldUser_Contrast = sc.sql(
        s"""
           |select '${stat_date}' as stat_date, count(cid_id) as imp_count_oldUser_Contrast
           |from data_feed_exposure je inner join device_id_old
           |on je.device_id = device_id_old.device_id
           |where je.cid_type = 'diary'
           |and je.device_id regexp'1$$'
           |and je.device_id not in (select device_id from blacklist)
           |and je.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
           |and je.stat_date ='${stat_date}'
         """.stripMargin
      )




      val result1 = clk_count_oldUser.join(imp_count_oldUser,"stat_date")
        .join(clk_count_all,"stat_date")
        .join(imp_count__all,"stat_date")
        .join(clk_count_oldUser_Contrast,"stat_date")
        .join(imp_count_oldUser_Contrast,"stat_date")
      result1.show()

//      GmeiConfig.writeToJDBCTable(result1, "ffm_diary_ctr", SaveMode.Append)

//      GmeiConfig.writeToJDBCTable("jdbc:mysql://152.136.44.138:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",result1, table="ffm_diary_ctr",SaveMode.Append)
      println("开始写入")
//      GmeiConfig.writeToJDBCTable("jerry.jdbcuri",result1, table="ffm_diary_ctr",SaveMode.Append)
//      println("写入完成")

      GmeiConfig.writeToJDBCTable("jdbc:mysql://172.16.40.158:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",result1, table="ffm_diary_ctr",SaveMode.Append)
      println("写入完成")



    }


  }

}




object Repeated_content_recommendation {

  Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
  Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)

  case class Params(env: String = "dev",
                    date: String = "2018-08-01"
                   ) extends AbstractParams[Params] with Serializable

  val defaultParams = Params()

  val parser = new OptionParser[Params]("Feed_EDA") {
    head("WeafareStat")
    opt[String]("env")
      .text(s"the databases environment you used")
      .action((x, c) => c.copy(env = x))
    opt[String] ("date")
      .text(s"the date you used")
      .action((x,c) => c.copy(date = x))
    note(
      """
        |For example, the following command runs this app on a tidb dataset:
        |
        | spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
      """.stripMargin +
        s"|   --env ${defaultParams.env}"
    )
  }

  def main(args: Array[String]): Unit = {
    parser.parse(args, defaultParams).map { param =>
      GmeiConfig.setup(param.env)
      val spark_env = GmeiConfig.getSparkSession()
      val sc = spark_env._2

//      val ti = new TiContext(sc)
      sc.sql("use jerry_prod")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")


//      val stat_date = GmeiConfig.getMinusNDate(1)
      val stat_date = param.date
      val partition_date = stat_date.replace("-","")



      val agency_id = sc.sql(
        s"""
           |SELECT DISTINCT(cl_id) as device_id
           |FROM online.ml_hospital_spam_pv_day
           |WHERE partition_date >= '20180402'
           |AND partition_date <= '${partition_date}'
           |AND pv_ratio >= 0.95
           |UNION ALL
           |SELECT DISTINCT(cl_id) as device_id
           |FROM online.ml_hospital_spam_pv_month
           |WHERE partition_date >= '20171101'
           |AND partition_date <= '${partition_date}'
           |AND pv_ratio >= 0.95
           |UNION ALL
           |select distinct(device_id)
           |from blacklist
         """.stripMargin
      )
      agency_id.createOrReplaceTempView("agency_id")



      val device_id_oldUser = sc.sql(
        s"""
           |select distinct(om.device_id) as device_id
           |from online.ml_device_day_active_status om left join agency_id
           |on om.device_id = agency_id.device_id
           |where om.active_type = '4'
           |and om.first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
           |    ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
           |    ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
           |    ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
           |    ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
           |    ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
           |    ,'promotion_shike','promotion_julang_jl03','','unknown')
           |and om.partition_date ='${partition_date}'
           |and agency_id.device_id is null
         """.stripMargin
      )
      device_id_oldUser.createOrReplaceTempView("device_id_old")
      device_id_oldUser.show()


      val device_id_newUser = sc.sql(
        s"""
           |select distinct(om.device_id) as device_id
           |from online.ml_device_day_active_status om left join agency_id
           |on om.device_id = agency_id.device_id
           |where om.active_type != '4'
           |and om.first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
           |    ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
           |    ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
           |    ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
           |    ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
           |    ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
           |    ,'promotion_shike','promotion_julang_jl03','','unknown')
           |and om.partition_date ='${partition_date}'
           |and agency_id.device_id is null
         """.stripMargin
      )
      device_id_newUser.createOrReplaceTempView("device_id_new")
      device_id_newUser.show()



      val exp_diary_new = sc.sql(
        s"""
           |select concat_ws('|',de.device_id,de.cid_id)
           |from data_feed_exposure  de inner join device_id_new
           |on de.device_id=device_id_new.device_id
           |where de.cid_type = 'diary'
           |and de.stat_date ='${stat_date}'
         """.stripMargin
      )
      val get_result_new =exp_diary_new.rdd.map((_, 1)).reduceByKey(_ + _)
              .sortBy(_._2,false)

      val more_than2_new=get_result_new.filter(_._2 >=2).map(_._2).reduce((x,y)=>x+y)
      println(more_than2_new)
      val all_new =get_result_new.map(_._2).reduce((x,y)=>x+y)
      println(all_new)
      val repeated_rate_new= more_than2_new / all_new.toDouble
      println(repeated_rate_new)


      val exp_diary_old = sc.sql(
        s"""
           |select concat_ws('|',de.device_id,de.cid_id)
           |from data_feed_exposure de inner join device_id_old
           |on de.device_id=device_id_old.device_id
           |where de.cid_type = 'diary'
           |and de.stat_date ='${stat_date}'
               """.stripMargin
      )
      val get_result_old =exp_diary_old.rdd.map((_, 1)).reduceByKey(_ + _)
        .sortBy(_._2,false)

      val more_than2_old=get_result_old.filter(_._2 >=2).map(_._2).reduce((x,y)=>x+y)
      println(more_than2_old)
      val all_old =get_result_old.map(_._2).reduce((x,y)=>x+y)
      println(all_old)
      val repeated_rate_old= more_than2_old / all_old.toDouble
      println(repeated_rate_old)


      val result2=List((stat_date,more_than2_old,all_old,more_than2_new,all_new))
      val df2 = sc.createDataFrame(result2).toDF("stat_date","old_rep_count","old_imp_all","new_rep_count","new_imp_all")

//      GmeiConfig.writeToJDBCTable(df2, table = "Repeated_evaluation_indicator", SaveMode.Append)

      println("开始写入")
//      GmeiConfig.writeToJDBCTable("jerry.jdbcuri",df2, table="Repeated_evaluation_indicator",SaveMode.Append)
//      println("写入完成")

      GmeiConfig.writeToJDBCTable("jdbc:mysql://172.16.40.158:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",df2, table="Repeated_evaluation_indicator",SaveMode.Append)
      println("写入完成")

//      val exp_diary_old = sc.sql(
//        s"""
//           |select concat_ws('|',de.device_id,de.cid_id)
//           |from data_feed_exposure de inner join device_id_old
//           |where de.cid_type = 'diary'
//           |and de.stat_date ='${stat_date}'
//         """.stripMargin
//      )
//      val get_result_old =exp_diary_old.rdd.map((_, 1)).reduceByKey(_ + _)
//        .sortBy(_._2,false)
//
//      val more_than2_old=get_result_old.filter(_._2 >=2).map(_._2).reduce((x,y)=>x+y)
//      println(more_than2_old)
//      val all_old =get_result_old.map(_._2).reduce((x,y)=>x+y)
//      println(all_old)
//      val repeated_rate_old= more_than2_old / all_old.toDouble
//      println(repeated_rate_old)
//
//
//      val result2=List((stat_date,more_than2_old,all_old))
//      val df2 = sc.createDataFrame(result2).toDF("stat_date","old_rep_count","old_imp_all")
//
//      GmeiConfig.writeToJDBCTable(df2, table = "Repeated_evaluation_indicator_old", SaveMode.Append)


//      val temp=get_result.collect()
//            for (i <- 0 until 30 ) {
//              println(temp(i))
//            }
    }


  }

}


object Repeated_content_recommendation_moreday {

  Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
  Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)

  case class Params(env: String = "dev",
                    date: String = "2018-08-01"
                   ) extends AbstractParams[Params] with Serializable

  val defaultParams = Params()

  val parser = new OptionParser[Params]("Feed_EDA") {
    head("WeafareStat")
    opt[String]("env")
      .text(s"the databases environment you used")
      .action((x, c) => c.copy(env = x))
    opt[String] ("date")
      .text(s"the date you used")
      .action((x,c) => c.copy(date = x))
    note(
      """
        |For example, the following command runs this app on a tidb dataset:
        |
        | spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
      """.stripMargin +
        s"|   --env ${defaultParams.env}"
    )
  }

  def main(args: Array[String]): Unit = {
    parser.parse(args, defaultParams).map { param =>
      GmeiConfig.setup(param.env)
      val spark_env = GmeiConfig.getSparkSession()
      val sc = spark_env._2

//      val ti = new TiContext(sc)
      sc.sql("use jerry_prod")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")


      val stat_date = GmeiConfig.getMinusNDate(1)
//      val stat_date = "2019-01-16"
//      val partition_date = stat_date.replace("-","")


      val now= new Date()
//      val stat_date=param.date

      val dateFormat = new SimpleDateFormat("yyyy-MM-dd")
      val date = dateFormat.format(now.getTime - 86400000L * 8)
      val yesterday=dateFormat.format(now.getTime- 86400000L)


      val exp_diary = sc.sql(
        s"""
           |select stat_date,device_id,concat_ws(',',collect_set(distinct cid_id)) as expoure_diary
           |from data_feed_exposure_precise
           |where cid_type = 'diary'
           |and stat_date >='${date}'
           |and device_id not in (select device_id from blacklist)
           |group by device_id,stat_date
         """.stripMargin
      ).rdd.map(row=>(row(0).toString,row(1).toString,row(2).toString)).map(row=>(row._2,row._3)).groupByKey()
        .filter(x => x._2.size >1)

      //打印结果
//      val temp=exp_diary.take(10).foreach(println)

//      val count_imp=exp_diary.map(_._2).map(row=>row.flatMap(x=>x.split(",")).toArray)
//        .map(x => (x,x)).map(x => (x._1.distinct.size,x._2.size)).map(x => (x._2-x._1,x._2))

      //统计每个用户重复日记个数
      val count_imp=exp_diary.map(_._2).map(row=>row.flatMap(x=>x.split(",")).toArray)
        .map(x => (x,x)).map(x => (x._1.distinct.size,x._2.size)).map(x => (x._2-x._1,x._2)).collect()
      val fenmu = count_imp.map(x => x._1).reduce((x,y) => x+y)
      val fenzi =   count_imp.map(x => x._2).reduce((x,y) => x+y)

      val repeated_rate= fenmu / fenzi.toDouble
      val result=List((yesterday,repeated_rate))
      println(result)
      val df_result = sc.createDataFrame(result)

//      GmeiConfig.writeToJDBCTable(df_result, table = "Repeated_content_recommendation_moreday", SaveMode.Append)
//      GmeiConfig.writeToJDBCTable("jdbc:mysql://152.136.44.138:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",df_result, table="Repeated_content_recommendation_moreday",SaveMode.Append)

      println("开始写入")
//      GmeiConfig.writeToJDBCTable("jerry.jdbcuri",df_result, table="Repeated_content_recommendation_moreday",SaveMode.Append)
//      println("写入完成")

      GmeiConfig.writeToJDBCTable("jdbc:mysql://172.16.40.158:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",df_result, table="Repeated_content_recommendation_moreday",SaveMode.Append)
      println("写入完成")


      //      exp_diary.show()
//      exp_diary.createOrReplaceTempView("exp_diary")
//      GmeiConfig.writeToJDBCTable(df, table = "Repeated_evaluation_indicator_moreday", SaveMode.Append)

    }
  }
}





object GetHiveSearchData {

  Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
  Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)

  case class Params(env: String = "dev",
                    date: String = "2018-08-01"
                   ) extends AbstractParams[Params] with Serializable

  case class GetHiveSearchData_temp(stat_date:String,diaryExposureVal:String,diaryClickNum:String,meigouExposureVal:String,meigouClickNum:String,searchResultExposureVal:String,searchResultClickNum:String,searchDoctorExposureVal:String,searchDoctorClickNum:String,searchHospitalExposureVal:String,searchHospitalClickNum:String)

  val defaultParams = Params()

  val parser = new OptionParser[Params]("Feed_EDA") {
    head("WeafareStat")
    opt[String]("env")
      .text(s"the databases environment you used")
      .action((x, c) => c.copy(env = x))
    opt[String] ("date")
      .text(s"the date you used")
      .action((x,c) => c.copy(date = x))
    note(
      """
        |For example, the following command runs this app on a tidb dataset:
        |
        | spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
      """.stripMargin +
        s"|   --env ${defaultParams.env}"
    )
  }

  def main(args: Array[String]): Unit = {
    parser.parse(args, defaultParams).map { param =>
      GmeiConfig.setup(param.env)
      val spark_env = GmeiConfig.getSparkSession()
      val sc = spark_env._2

//      val ti = new TiContext(sc)
      sc.sql("use jerry_prod")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "GetHiveSearchData_CTR")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")


      val stat_date = GmeiConfig.getMinusNDate(1)

//      val stat_date = param.date
      val partition_date = stat_date.replace("-","")


      val strDiaryExposureAction = "/api/search/v2/diary"
      val strDiaryClickAction = "search_result_more_diary_click_item"    //需要确认
      var (diaryExposureVal,diaryClickNum,diaryExposureMapCount,diaryExposureFilterCount) = GetSearchResultData(sc,strDiaryExposureAction,strDiaryClickAction,stat_date)


      val strMeigouExposureAction = "/api/search/v2/service"
      val strMeigouClickAction = "search_result_welfare_click_item"
      var (meigouExposureVal,meigouClickNum,meigouExposureMapCount,meigouExposureFilterCount) = GetSearchResultData(sc,strMeigouExposureAction,strMeigouClickAction,stat_date)


      val strSearchResultExposureAction = "/api/search/v2/content"
      val strSearchResultClickAction = "search_result_click_diary_item"  //需要确认
      var (searchResultExposureVal,searchResultClickNum,searchResultExposureMapCount,searchResultExposureFilterCount) = GetSearchResultData(sc,strSearchResultExposureAction,strSearchResultClickAction,stat_date)


      val strSearchDoctorExposureAction = "/api/search/v2/doctor"
      val strSearchDoctorClickAction = "search_result_doctor_click_item"
      var (searchDoctorExposureVal,searchDoctorClickNum,searchDoctorExposureMapCount,searchDoctorExposureFilterCount) = GetSearchResultData(sc,strSearchDoctorExposureAction,strSearchDoctorClickAction,stat_date)


      val strSearchHospitalExposureAction = "/api/search/v2/hospital"
      val strSearchHospitalClickAction = "search_result_hospital_click_item"
      var (searchHospitalExposureVal,searchHospitalClickNum,searchHospitalExposureMapCount,searchHospitalExposureFilterCount) = GetSearchResultData(sc,strSearchHospitalExposureAction,strSearchHospitalClickAction,stat_date)



      val jigou_id = sc.sql(
        s"""
           |SELECT cl_id
           |FROM online.ml_hospital_spam_pv_day
           |WHERE partition_date>='20180402' AND partition_date<'${partition_date}'
           |AND pv_ratio>=0.95
           |UNION ALL
           |SELECT cl_id
           |FROM online.ml_hospital_spam_pv_month
           |WHERE partition_date>='20171101' AND partition_date<'${partition_date}'
           |AND pv_ratio>=0.95
           |UNION ALL
           |select device_id as cl_id from blacklist
       """.stripMargin
      )
      jigou_id.createOrReplaceTempView("jigou_id")


      val diary_clickSql = sc.sql(
        s"""
           |select
           |count(1) click_num
           |from  online.tl_hdfs_maidian_view ov left join jigou_id
           |on ov.cl_id = jigou_id.cl_id
           |where ov.partition_date='${partition_date}'
           |and ov.action='on_click_diary_card'
           |and ov.params['page_name']='search_result_diary'
           |and jigou_id.cl_id is null
       """.stripMargin
      )

      val diary_clickArray = diary_clickSql.collect()
      val diary_click_num = diary_clickArray(0).getAs[Long]("click_num")

      val content_diary_clickSql = sc.sql(
        s"""
           |select
           |count(1) click_num
           |from  online.tl_hdfs_maidian_view ov left join jigou_id
           |on ov.cl_id = jigou_id.cl_id
           |where ov.partition_date='${partition_date}'
           |and ov.action='on_click_diary_card'
           |and  ov.params['page_name']='search_result_more'
           |and jigou_id.cl_id is null
       """.stripMargin
      )

      val content_diary_clickArray:Array[Row] = content_diary_clickSql.collect()
      val content_diary_click_num:Long = content_diary_clickArray(0).getAs[Long]("click_num")




      println("searchDiaryExposureVal:" + diaryExposureVal + "\tsearchDiaryClickNum:" + diary_click_num + "\tclickRate:" + (diary_click_num.floatValue()/diaryExposureVal.floatValue()).formatted("%.2f"))
      println("searchMeigouExposureVal:" + meigouExposureVal + "\tsearchMeigouClickNum:" + meigouClickNum + "\tclickRate:" + (meigouClickNum.floatValue()/meigouExposureVal.floatValue()).formatted("%.2f"))
      println("searchResultExposureVal:" + searchResultExposureVal + "\tsearchResultClickNum:" + (searchResultClickNum+content_diary_click_num) + "\tclickRate:" + ((searchResultClickNum+content_diary_click_num).floatValue()/searchResultExposureVal.floatValue()).formatted("%.2f"))
      println("searchDoctorExposureVal:" + searchDoctorExposureVal + "\tsearchDoctorClickNum:" + searchDoctorClickNum + "\tclickRate:" + (searchDoctorClickNum.floatValue()/searchDoctorExposureVal.floatValue()).formatted("%.2f"))
      println("searchHospitalExposureVal:" + searchHospitalExposureVal + "\tsearchHospitalClickNum:" + searchHospitalClickNum + "\tclickRate:" + (searchHospitalClickNum.floatValue()/searchHospitalExposureVal.floatValue()).formatted("%.2f"))



//      val add_data = sc.sql(
//        s"""
//           |insert into table GetHiveSearchData_CTR(stat_date,diaryExposureVal,diaryClickNum,meigouExposureVal,meigouClickNum,searchResultExposureVal,searchResultClickNum,searchDoctorExposureVal,searchDoctorClickNum,searchHospitalExposureVal,searchHospitalClickNum)
//           |values ('${stat_date}','${diaryExposureVal}','${(diary_click_num+diaryClickNum)}','${meigouExposureVal}','${meigouClickNum}','${searchResultExposureVal}','${(searchResultClickNum+content_diary_click_num)}','${searchDoctorExposureVal}','${searchDoctorClickNum}','${searchHospitalExposureVal}','${searchHospitalClickNum}')
//       """.stripMargin
//      )


      import sc.implicits._
      val result=List((stat_date,diaryExposureVal,(diary_click_num+diaryClickNum),meigouExposureVal,meigouClickNum,searchResultExposureVal,(searchResultClickNum+content_diary_click_num),searchDoctorExposureVal,searchDoctorClickNum,searchHospitalExposureVal,searchHospitalClickNum))
//      val df_result = sc.createDataFrame(result).map(x=>GetHiveSearchData_temp(x(0).toString,x(1).toString,x(2).toString,x(3).toString,x(4).toString,x(5).toString,x(6).toString,x(7).toString,x(8).toString,x(9).toString,x(10).toString)).toDF()
      val df_result = sc.sparkContext.parallelize(result).map(x=>(x._1,x._2,x._3,x._4,x._5,x._6,x._7,x._8,x._9,x._10,x._11)).toDF("stat_date","diaryExposureVal","diaryClickNum","meigouExposureVal","meigouClickNum","searchResultExposureVal","searchResultClickNum","searchDoctorExposureVal",
      "searchDoctorClickNum","searchHospitalExposureVal","searchHospitalClickNum")

//
//      GmeiConfig.writeToJDBCTable(df_result, table = "GetHiveSearchData_CTR", SaveMode.Append)
//      GmeiConfig.writeToJDBCTable("jdbc:mysql://152.136.44.138:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",df_result, table="GetHiveSearchData_CTR",SaveMode.Append)

      println("开始写入")
//      GmeiConfig.writeToJDBCTable("jerry.jdbcuri",df_result, table="GetHiveSearchData_CTR",SaveMode.Append)
//      println("写入完成")

      GmeiConfig.writeToJDBCTable("jdbc:mysql://172.16.40.158:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",df_result, table="GetHiveSearchData_CTR",SaveMode.Append)
      println("写入完成")


    }


    def GetSearchResultData(spark: SparkSession, strExposureAction:String, strClickAction:String,stat_date:String) = {

      val partition_date = stat_date.replace("-","")

      val exposureAccum = spark.sparkContext.longAccumulator("search exposure data")

      val jigou_id = spark.sql(
        s"""
           |SELECT cl_id
           |FROM online.ml_hospital_spam_pv_day
           |WHERE partition_date>='20180402' AND partition_date<'${partition_date}'
           |AND pv_ratio>=0.95
           |UNION ALL
           |SELECT cl_id
           |FROM online.ml_hospital_spam_pv_month
           |WHERE partition_date>='20171101' AND partition_date<'${partition_date}'
           |AND pv_ratio>=0.95
           |UNION ALL
           |select device_id as cl_id from blacklist
       """.stripMargin
      )
      jigou_id.createOrReplaceTempView("jigou_id")

      val exposureSql = spark.sql(
        s"""
           |select action,user_id,city_id,app
           |from online.tl_hdfs_backend_view ov left join jigou_id
           |on ov.cl_id = jigou_id.cl_id
           |where  ov.action='$strExposureAction'
           |and ov.partition_date='${partition_date}'
           |and jigou_id.cl_id is null
    """.stripMargin
      )

      val exposureMapResult = exposureSql.rdd.map(row => {


        //val jsonObj = JSON.parseFull(row.getAs[Map[String,Any]]("app").toString())

        val rowAppFieldMap:Map[String,Any] = row.getAs[Map[String,Any]]("app")

        if (rowAppFieldMap.nonEmpty)
        {
          // jsonMap:Map[String,Any] = jsonObj.get.asInstanceOf[Map[String,Any]]

          if (rowAppFieldMap.contains("exposure_data")){

            val exposure_data_lists:List[Any] = JSON.parseFull(rowAppFieldMap("exposure_data").toString).get.asInstanceOf[List[Any]]

            if (exposure_data_lists.length > 0){

              exposure_data_lists.foreach(exposure_item=>{


                if (exposure_item!=None && exposure_item.toString.nonEmpty){
                  val exposureItemMap:Map[String,Any] = exposure_item.asInstanceOf[Map[String,Any]]

                  if (exposureItemMap.contains("list_ids")){
                    //val exposure_list_ids:List[Any] = exposureItemMap.get("list_ids").get.asInstanceOf[List[Any]]
                    val exposure_list_ids:List[Any] = exposureItemMap("list_ids").asInstanceOf[List[Any]]

                    exposureAccum.add(exposure_list_ids.length)
                  }
                }else{
                  None
                }
              })

              exposure_data_lists
            }else{
              None
            }

          }
        }else{
          None
        }

      })

      //must add cache
      exposureMapResult.cache()
      val exposureFilterResult = exposureMapResult.filter(_.!=(None))
      //val exposureArray:Array[Any] = exposureFilterResult.collect()
      //exposureArray.foreach(item => println(item.toString))

      val exposureMapCount:Long = exposureMapResult.count()
      val exposureFilterCount:Long = exposureFilterResult.count()

      val clickSql = spark.sql(
        s"""
           |select
           |count(1) click_num
           |from  online.tl_hdfs_maidian_view  ov left join jigou_id
           |on ov.cl_id = jigou_id.cl_id
           |where ov.partition_date='${partition_date}'
           |and ov.action='$strClickAction'
           |and jigou_id.cl_id is null
     """.stripMargin
      )

      val clickArray:Array[Row] = clickSql.collect()
      val click_num:Long = clickArray(0).getAs[Long]("click_num")


      (exposureAccum.value,click_num,exposureMapCount,exposureFilterCount)



    }

//      GmeiConfig.writeToJDBCTable(df_result, table = "Repeated_content_recommendation_moreday", SaveMode.Append)

      //      exp_diary.show()
      //      exp_diary.createOrReplaceTempView("exp_diary")
      //      GmeiConfig.writeToJDBCTable(df, table = "Repeated_evaluation_indicator_moreday", SaveMode.Append)

    }


  }




object find_reason {

  Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
  Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)

  case class Params(env: String = "dev",
                    date: String = "2018-08-01"
                   ) extends AbstractParams[Params] with Serializable

  val defaultParams = Params()

  val parser = new OptionParser[Params]("Feed_EDA") {
    head("WeafareStat")
    opt[String]("env")
      .text(s"the databases environment you used")
      .action((x, c) => c.copy(env = x))
    opt[String] ("date")
      .text(s"the date you used")
      .action((x,c) => c.copy(date = x))
    note(
      """
        |For example, the following command runs this app on a tidb dataset:
        |
        | spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
      """.stripMargin +
        s"|   --env ${defaultParams.env}"
    )
  }

  def main(args: Array[String]): Unit = {
    parser.parse(args, defaultParams).map { param =>
      GmeiConfig.setup(param.env)
      val spark_env = GmeiConfig.getSparkSession()
      val sc = spark_env._2

//      val ti = new TiContext(sc)
      sc.sql("use jerry_prod")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "diary_video")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
//      ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")

//      val stat_date = GmeiConfig.getMinusNDate(1)
      val stat_date=param.date
      val partition_date = stat_date.replace("-","")
      //机构id
      val blacklist = sc.sql(
        s"""
           |select device_id from blacklist
         """.stripMargin
      )
      blacklist.createOrReplaceTempView("blacklist")

      val agency_id = sc.sql(
        s"""
           |SELECT DISTINCT(cl_id) as device_id
           |FROM online.ml_hospital_spam_pv_day
           |WHERE partition_date >= '20180402'
           |AND partition_date <= '${partition_date}'
           |AND pv_ratio >= 0.95
           |UNION ALL
           |SELECT DISTINCT(cl_id) as device_id
           |FROM online.ml_hospital_spam_pv_month
           |WHERE partition_date >= '20171101'
           |AND partition_date <= '${partition_date}'
           |AND pv_ratio >= 0.95
         """.stripMargin
      )
//      agency_id.show()
      agency_id.createOrReplaceTempView("agency_id")
      //每日新用户
      val device_id_newUser = sc.sql(
        s"""
           |select distinct(os.device_id) as device_id
           |from online.ml_device_day_active_status os left join blacklist
           |on os.device_id = blacklist.device_id
           |where os.active_type != '4'
           |and os.first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
           |    ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
           |    ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
           |    ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
           |    ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
           |    ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
           |    ,'promotion_shike','promotion_julang_jl03','','unknown')
           |and os.partition_date ='${partition_date}'
           |and blacklist.device_id is null
         """.stripMargin
      )
//      device_id_newUser.show()
      device_id_newUser.createOrReplaceTempView("device_id_new")

      //每日老用户
      val device_id_oldUser = sc.sql(
        s"""
           |select distinct(os.device_id) as device_id
           |from online.ml_device_day_active_status os left join blacklist
           |on os.device_id=blacklist.device_id
           |where os.active_type = '4'
           |and os.first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
           |    ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
           |    ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
           |    ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
           |    ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
           |    ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
           |    ,'promotion_shike','promotion_julang_jl03','','unknown')
           |and os.partition_date ='${partition_date}'
           |and blacklist.device_id is null
         """.stripMargin
      )
//      device_id_oldUser.show()
      device_id_oldUser.createOrReplaceTempView("device_id_old")



      val all_clk = sc.sql(
        s"""
           |select ov.cl_id as device_id
           |from online.tl_hdfs_maidian_view ov left join agency_id
           |on ov.cl_id = agency_id.device_id
           |where ov.action = 'on_click_diary_card'
           |and ov.cl_id != "NULL"
           |and ov.params['tab_name'] = '精选'
           |and ov.params['page_name'] = 'home'
           |and ov.partition_date='${partition_date}'
           |and agency_id.device_id is  null
       """.stripMargin
      )
//      all_clk.show()
      all_clk.createOrReplaceTempView("all_clk_diary_card")

      //1.当天老用户中的点击用户数
      val old_clk_count = sc.sql(
        s"""
           |select '${stat_date}' as stat_date,count(distinct(oc.device_id)) as old_clk_count
           |from all_clk_diary_card oc inner join device_id_old
           |on oc.device_id = device_id_old.device_id
       """.stripMargin
      )
//      old_clk_count.show()
      //1.1有点击的老用户
      val old_clk_device = sc.sql(
        s"""
           |select distinct(oc.device_id) as device_id
           |from all_clk_diary_card oc inner join device_id_old
           |on oc.device_id = device_id_old.device_id
       """.stripMargin
      )
      old_clk_device.createOrReplaceTempView("old_clk_device")


      //1.1无点击的老用户
      val old_noclk_device = sc.sql(
        s"""
           |select device_id
           |from device_id_old
           |except
           |select device_id
           |from old_clk_device
       """.stripMargin
      )
      old_noclk_device.show()



      //2.当天新用户中的点击用户数
//      val new_clk_count = sc.sql(
//        s"""
//           |select '${stat_date}' as stat_date,count(distinct(oc.device_id)) as new_clk_count
//           |from all_clk_diary_card oc inner join device_id_new
//           |on oc.device_id = device_id_new.device_id
//       """.stripMargin
//      )
////2.1 有点击的新用户
//      val new_clk_device = sc.sql(
//        s"""
//           |select distinct(oc.device_id) as device_id
//           |from all_clk_diary_card oc inner join device_id_new
//           |on oc.device_id = device_id_new.device_id
//       """.stripMargin
//      )
//      new_clk_device.createOrReplaceTempView("new_clk_device")
//
//
//      //3.当天老用户数
//
//      val old_count = sc.sql(
//        s"""
//           |select '${stat_date}' as stat_date,count(distinct(dio.device_id)) as old_count
//           |from device_id_old dio left join agency_id
//           |on dio.device_id = agency_id.device_id
//           |where agency_id.device_id is null
//       """.stripMargin
//      )
//
//      //4.当天新用户数
//      val new_count = sc.sql(
//        s"""
//           |select '${stat_date}' as stat_date,count(distinct(din.device_id)) as new_count
//           |from device_id_new din left join agency_id
//           |on din.device_id = agency_id.device_id
//           |where agency_id.device_id is null
//       """.stripMargin
//      )
//
//      //5.有点击老用户的曝光数
//      val exp_clkold_count = sc.sql(
//        s"""
//           |select '${stat_date}' as stat_date,count(dp.device_id) as imp_clkold_count
//           |from data_feed_exposure_precise dp inner join old_clk_device
//           |on dp.device_id = old_clk_device.device_id
//           |where stat_date='${stat_date}'
//           |group by stat_date
//       """.stripMargin
//      )
//
//      //6.有点击新用户的曝光数
//      val exp_clknew_count = sc.sql(
//        s"""
//           |select '${stat_date}' as stat_date,count(dp.device_id) as imp_clknew_count
//           |from data_feed_exposure_precise dp inner join new_clk_device
//           |on dp.device_id = new_clk_device.device_id
//           |where stat_date='${stat_date}'
//           |group by stat_date
//       """.stripMargin
//      )
//
//      val result = old_clk_count.join(new_clk_count,"stat_date")
//        .join(old_count,"stat_date")
//        .join(new_count,"stat_date")
//        .join(exp_clkold_count,"stat_date")
//        .join(exp_clknew_count,"stat_date")
//
//      GmeiConfig.writeToJDBCTable(result, "device_clk_imp_reason", SaveMode.Append)


    }

  }


}