1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
package com.gmei
import java.io.Serializable
import java.text.SimpleDateFormat
import breeze.linalg.split
import com.gmei.WeafareStat.{defaultParams, parser}
import org.apache.spark.sql.{Row, SaveMode, SparkSession}
//import org.apache.spark.sql.{Row, SaveMode, SparkSession, TiContext}
import org.apache.log4j.{Level, Logger}
import scopt.OptionParser
import com.gmei.lib.AbstractParams
import com.github.nscala_time.time.Imports._
import java.text.SimpleDateFormat
import java.util.Date
import scala.util.parsing.json.JSON
object temp_count {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)
case class Params(env: String = "dev",
date: String = "2018-08-01"
) extends AbstractParams[Params] with Serializable
val defaultParams = Params()
val parser = new OptionParser[Params]("Feed_EDA") {
head("WeafareStat")
opt[String]("env")
.text(s"the databases environment you used")
.action((x, c) => c.copy(env = x))
opt[String] ("date")
.text(s"the date you used")
.action((x,c) => c.copy(date = x))
note(
"""
|For example, the following command runs this app on a tidb dataset:
|
| spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
""".stripMargin +
s"| --env ${defaultParams.env}"
)
}
def main(args: Array[String]): Unit = {
parser.parse(args, defaultParams).map { param =>
GmeiConfig.setup(param.env)
val spark_env = GmeiConfig.getSparkSession()
val sc = spark_env._2
// val ti = new TiContext(sc)
sc.sql("use jerry_prod")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "diary_video")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")
val stat_date = GmeiConfig.getMinusNDate(1)
// val stat_date = param.date
//println(param.date)
val partition_date = stat_date.replace("-","")
val decive_id_oldUser = sc.sql(
s"""
|select distinct(device_id) as device_id
|from online.ml_device_day_active_status
|where active_type = '4'
|and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
| ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
| ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
| ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
| ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
| ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
| ,'promotion_shike','promotion_julang_jl03','','unknown')
|and partition_date ='${partition_date}'
""".stripMargin
)
decive_id_oldUser.createOrReplaceTempView("device_id_old")
val clk_count_oldUser = sc.sql(
s"""
|select '${stat_date}' as stat_date, count(jd.cid_id) as clk_count_oldUser
|from data_feed_click jd inner join device_id_old
|on jd.device_id = device_id_old.device_id
|where (jd.cid_type = 'diary' or jd.cid_type = 'diary_video')
|and jd.device_id not in (select device_id from blacklist)
|and jd.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
|and jd.stat_date ='${stat_date}'
""".stripMargin
)
val imp_count_oldUser = sc.sql(
s"""
|select '${stat_date}' as stat_date, count(cid_id) as imp_count_oldUser
|from data_feed_exposure je inner join device_id_old
|on je.device_id = device_id_old.device_id
|where je.cid_type = 'diary'
|and je.device_id not in (select device_id from blacklist)
|and je.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
|and je.stat_date ='${stat_date}'
""".stripMargin
)
val clk_count_all = sc.sql(
s"""
|select '${stat_date}' as stat_date, count(cid_id) as clk_count_all
|from data_feed_click
|where (cid_type = 'diary' or cid_type = 'diary_video')
|and device_id not in (select device_id from blacklist)
|and city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
|and stat_date ='${stat_date}'
""".stripMargin
)
val imp_count__all = sc.sql(
s"""
|select '${stat_date}' as stat_date, count(cid_id) as imp_count_all
|from data_feed_exposure
|where cid_type = 'diary'
|and device_id not in (select device_id from blacklist)
|and city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
|and stat_date ='${stat_date}'
""".stripMargin
)
val clk_count_oldUser_Contrast = sc.sql(
s"""
|select '${stat_date}' as stat_date, count(cid_id) as clk_count_oldUser_Contrast
|from data_feed_click jd inner join device_id_old
|on jd.device_id = device_id_old.device_id
|where (jd.cid_type = 'diary' or jd.cid_type = 'diary_video')
|and jd.device_id regexp'1$$'
|and jd.device_id not in (select device_id from blacklist)
|and jd.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
|and jd.stat_date ='${stat_date}'
""".stripMargin
)
val imp_count_oldUser_Contrast = sc.sql(
s"""
|select '${stat_date}' as stat_date, count(cid_id) as imp_count_oldUser_Contrast
|from data_feed_exposure je inner join device_id_old
|on je.device_id = device_id_old.device_id
|where je.cid_type = 'diary'
|and je.device_id regexp'1$$'
|and je.device_id not in (select device_id from blacklist)
|and je.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
|and je.stat_date ='${stat_date}'
""".stripMargin
)
val result1 = clk_count_oldUser.join(imp_count_oldUser,"stat_date")
.join(clk_count_all,"stat_date")
.join(imp_count__all,"stat_date")
.join(clk_count_oldUser_Contrast,"stat_date")
.join(imp_count_oldUser_Contrast,"stat_date")
result1.show()
// GmeiConfig.writeToJDBCTable(result1, "ffm_diary_ctr", SaveMode.Append)
// GmeiConfig.writeToJDBCTable("jdbc:mysql://152.136.44.138:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",result1, table="ffm_diary_ctr",SaveMode.Append)
println("开始写入")
// GmeiConfig.writeToJDBCTable("jerry.jdbcuri",result1, table="ffm_diary_ctr",SaveMode.Append)
// println("写入完成")
GmeiConfig.writeToJDBCTable("jdbc:mysql://172.16.40.158:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",result1, table="ffm_diary_ctr",SaveMode.Append)
println("写入完成")
}
}
}
object Repeated_content_recommendation {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)
case class Params(env: String = "dev",
date: String = "2018-08-01"
) extends AbstractParams[Params] with Serializable
val defaultParams = Params()
val parser = new OptionParser[Params]("Feed_EDA") {
head("WeafareStat")
opt[String]("env")
.text(s"the databases environment you used")
.action((x, c) => c.copy(env = x))
opt[String] ("date")
.text(s"the date you used")
.action((x,c) => c.copy(date = x))
note(
"""
|For example, the following command runs this app on a tidb dataset:
|
| spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
""".stripMargin +
s"| --env ${defaultParams.env}"
)
}
def main(args: Array[String]): Unit = {
parser.parse(args, defaultParams).map { param =>
GmeiConfig.setup(param.env)
val spark_env = GmeiConfig.getSparkSession()
val sc = spark_env._2
// val ti = new TiContext(sc)
sc.sql("use jerry_prod")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")
// val stat_date = GmeiConfig.getMinusNDate(1)
val stat_date = param.date
val partition_date = stat_date.replace("-","")
val agency_id = sc.sql(
s"""
|SELECT DISTINCT(cl_id) as device_id
|FROM online.ml_hospital_spam_pv_day
|WHERE partition_date >= '20180402'
|AND partition_date <= '${partition_date}'
|AND pv_ratio >= 0.95
|UNION ALL
|SELECT DISTINCT(cl_id) as device_id
|FROM online.ml_hospital_spam_pv_month
|WHERE partition_date >= '20171101'
|AND partition_date <= '${partition_date}'
|AND pv_ratio >= 0.95
|UNION ALL
|select distinct(device_id)
|from blacklist
""".stripMargin
)
agency_id.createOrReplaceTempView("agency_id")
val device_id_oldUser = sc.sql(
s"""
|select distinct(om.device_id) as device_id
|from online.ml_device_day_active_status om left join agency_id
|on om.device_id = agency_id.device_id
|where om.active_type = '4'
|and om.first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
| ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
| ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
| ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
| ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
| ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
| ,'promotion_shike','promotion_julang_jl03','','unknown')
|and om.partition_date ='${partition_date}'
|and agency_id.device_id is null
""".stripMargin
)
device_id_oldUser.createOrReplaceTempView("device_id_old")
device_id_oldUser.show()
val device_id_newUser = sc.sql(
s"""
|select distinct(om.device_id) as device_id
|from online.ml_device_day_active_status om left join agency_id
|on om.device_id = agency_id.device_id
|where om.active_type != '4'
|and om.first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
| ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
| ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
| ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
| ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
| ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
| ,'promotion_shike','promotion_julang_jl03','','unknown')
|and om.partition_date ='${partition_date}'
|and agency_id.device_id is null
""".stripMargin
)
device_id_newUser.createOrReplaceTempView("device_id_new")
device_id_newUser.show()
val exp_diary_new = sc.sql(
s"""
|select concat_ws('|',de.device_id,de.cid_id)
|from data_feed_exposure de inner join device_id_new
|on de.device_id=device_id_new.device_id
|where de.cid_type = 'diary'
|and de.stat_date ='${stat_date}'
""".stripMargin
)
val get_result_new =exp_diary_new.rdd.map((_, 1)).reduceByKey(_ + _)
.sortBy(_._2,false)
val more_than2_new=get_result_new.filter(_._2 >=2).map(_._2).reduce((x,y)=>x+y)
println(more_than2_new)
val all_new =get_result_new.map(_._2).reduce((x,y)=>x+y)
println(all_new)
val repeated_rate_new= more_than2_new / all_new.toDouble
println(repeated_rate_new)
val exp_diary_old = sc.sql(
s"""
|select concat_ws('|',de.device_id,de.cid_id)
|from data_feed_exposure de inner join device_id_old
|on de.device_id=device_id_old.device_id
|where de.cid_type = 'diary'
|and de.stat_date ='${stat_date}'
""".stripMargin
)
val get_result_old =exp_diary_old.rdd.map((_, 1)).reduceByKey(_ + _)
.sortBy(_._2,false)
val more_than2_old=get_result_old.filter(_._2 >=2).map(_._2).reduce((x,y)=>x+y)
println(more_than2_old)
val all_old =get_result_old.map(_._2).reduce((x,y)=>x+y)
println(all_old)
val repeated_rate_old= more_than2_old / all_old.toDouble
println(repeated_rate_old)
val result2=List((stat_date,more_than2_old,all_old,more_than2_new,all_new))
val df2 = sc.createDataFrame(result2).toDF("stat_date","old_rep_count","old_imp_all","new_rep_count","new_imp_all")
// GmeiConfig.writeToJDBCTable(df2, table = "Repeated_evaluation_indicator", SaveMode.Append)
println("开始写入")
// GmeiConfig.writeToJDBCTable("jerry.jdbcuri",df2, table="Repeated_evaluation_indicator",SaveMode.Append)
// println("写入完成")
GmeiConfig.writeToJDBCTable("jdbc:mysql://172.16.40.158:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",df2, table="Repeated_evaluation_indicator",SaveMode.Append)
println("写入完成")
// val exp_diary_old = sc.sql(
// s"""
// |select concat_ws('|',de.device_id,de.cid_id)
// |from data_feed_exposure de inner join device_id_old
// |where de.cid_type = 'diary'
// |and de.stat_date ='${stat_date}'
// """.stripMargin
// )
// val get_result_old =exp_diary_old.rdd.map((_, 1)).reduceByKey(_ + _)
// .sortBy(_._2,false)
//
// val more_than2_old=get_result_old.filter(_._2 >=2).map(_._2).reduce((x,y)=>x+y)
// println(more_than2_old)
// val all_old =get_result_old.map(_._2).reduce((x,y)=>x+y)
// println(all_old)
// val repeated_rate_old= more_than2_old / all_old.toDouble
// println(repeated_rate_old)
//
//
// val result2=List((stat_date,more_than2_old,all_old))
// val df2 = sc.createDataFrame(result2).toDF("stat_date","old_rep_count","old_imp_all")
//
// GmeiConfig.writeToJDBCTable(df2, table = "Repeated_evaluation_indicator_old", SaveMode.Append)
// val temp=get_result.collect()
// for (i <- 0 until 30 ) {
// println(temp(i))
// }
}
}
}
object Repeated_content_recommendation_moreday {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)
case class Params(env: String = "dev",
date: String = "2018-08-01"
) extends AbstractParams[Params] with Serializable
val defaultParams = Params()
val parser = new OptionParser[Params]("Feed_EDA") {
head("WeafareStat")
opt[String]("env")
.text(s"the databases environment you used")
.action((x, c) => c.copy(env = x))
opt[String] ("date")
.text(s"the date you used")
.action((x,c) => c.copy(date = x))
note(
"""
|For example, the following command runs this app on a tidb dataset:
|
| spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
""".stripMargin +
s"| --env ${defaultParams.env}"
)
}
def main(args: Array[String]): Unit = {
parser.parse(args, defaultParams).map { param =>
GmeiConfig.setup(param.env)
val spark_env = GmeiConfig.getSparkSession()
val sc = spark_env._2
// val ti = new TiContext(sc)
sc.sql("use jerry_prod")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")
val stat_date = GmeiConfig.getMinusNDate(1)
// val stat_date = "2019-01-16"
// val partition_date = stat_date.replace("-","")
val now= new Date()
// val stat_date=param.date
val dateFormat = new SimpleDateFormat("yyyy-MM-dd")
val date = dateFormat.format(now.getTime - 86400000L * 8)
val yesterday=dateFormat.format(now.getTime- 86400000L)
val exp_diary = sc.sql(
s"""
|select stat_date,device_id,concat_ws(',',collect_set(distinct cid_id)) as expoure_diary
|from data_feed_exposure_precise
|where cid_type = 'diary'
|and stat_date >='${date}'
|and device_id not in (select device_id from blacklist)
|group by device_id,stat_date
""".stripMargin
).rdd.map(row=>(row(0).toString,row(1).toString,row(2).toString)).map(row=>(row._2,row._3)).groupByKey()
.filter(x => x._2.size >1)
//打印结果
// val temp=exp_diary.take(10).foreach(println)
// val count_imp=exp_diary.map(_._2).map(row=>row.flatMap(x=>x.split(",")).toArray)
// .map(x => (x,x)).map(x => (x._1.distinct.size,x._2.size)).map(x => (x._2-x._1,x._2))
//统计每个用户重复日记个数
val count_imp=exp_diary.map(_._2).map(row=>row.flatMap(x=>x.split(",")).toArray)
.map(x => (x,x)).map(x => (x._1.distinct.size,x._2.size)).map(x => (x._2-x._1,x._2)).collect()
val fenmu = count_imp.map(x => x._1).reduce((x,y) => x+y)
val fenzi = count_imp.map(x => x._2).reduce((x,y) => x+y)
val repeated_rate= fenmu / fenzi.toDouble
val result=List((yesterday,repeated_rate))
println(result)
val df_result = sc.createDataFrame(result)
// GmeiConfig.writeToJDBCTable(df_result, table = "Repeated_content_recommendation_moreday", SaveMode.Append)
// GmeiConfig.writeToJDBCTable("jdbc:mysql://152.136.44.138:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",df_result, table="Repeated_content_recommendation_moreday",SaveMode.Append)
println("开始写入")
// GmeiConfig.writeToJDBCTable("jerry.jdbcuri",df_result, table="Repeated_content_recommendation_moreday",SaveMode.Append)
// println("写入完成")
GmeiConfig.writeToJDBCTable("jdbc:mysql://172.16.40.158:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",df_result, table="Repeated_content_recommendation_moreday",SaveMode.Append)
println("写入完成")
// exp_diary.show()
// exp_diary.createOrReplaceTempView("exp_diary")
// GmeiConfig.writeToJDBCTable(df, table = "Repeated_evaluation_indicator_moreday", SaveMode.Append)
}
}
}
object GetHiveSearchData {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)
case class Params(env: String = "dev",
date: String = "2018-08-01"
) extends AbstractParams[Params] with Serializable
case class GetHiveSearchData_temp(stat_date:String,diaryExposureVal:String,diaryClickNum:String,meigouExposureVal:String,meigouClickNum:String,searchResultExposureVal:String,searchResultClickNum:String,searchDoctorExposureVal:String,searchDoctorClickNum:String,searchHospitalExposureVal:String,searchHospitalClickNum:String)
val defaultParams = Params()
val parser = new OptionParser[Params]("Feed_EDA") {
head("WeafareStat")
opt[String]("env")
.text(s"the databases environment you used")
.action((x, c) => c.copy(env = x))
opt[String] ("date")
.text(s"the date you used")
.action((x,c) => c.copy(date = x))
note(
"""
|For example, the following command runs this app on a tidb dataset:
|
| spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
""".stripMargin +
s"| --env ${defaultParams.env}"
)
}
def main(args: Array[String]): Unit = {
parser.parse(args, defaultParams).map { param =>
GmeiConfig.setup(param.env)
val spark_env = GmeiConfig.getSparkSession()
val sc = spark_env._2
// val ti = new TiContext(sc)
sc.sql("use jerry_prod")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "GetHiveSearchData_CTR")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")
val stat_date = GmeiConfig.getMinusNDate(1)
// val stat_date = param.date
val partition_date = stat_date.replace("-","")
val strDiaryExposureAction = "/api/search/v2/diary"
val strDiaryClickAction = "search_result_more_diary_click_item" //需要确认
var (diaryExposureVal,diaryClickNum,diaryExposureMapCount,diaryExposureFilterCount) = GetSearchResultData(sc,strDiaryExposureAction,strDiaryClickAction,stat_date)
val strMeigouExposureAction = "/api/search/v2/service"
val strMeigouClickAction = "search_result_welfare_click_item"
var (meigouExposureVal,meigouClickNum,meigouExposureMapCount,meigouExposureFilterCount) = GetSearchResultData(sc,strMeigouExposureAction,strMeigouClickAction,stat_date)
val strSearchResultExposureAction = "/api/search/v2/content"
val strSearchResultClickAction = "search_result_click_diary_item" //需要确认
var (searchResultExposureVal,searchResultClickNum,searchResultExposureMapCount,searchResultExposureFilterCount) = GetSearchResultData(sc,strSearchResultExposureAction,strSearchResultClickAction,stat_date)
val strSearchDoctorExposureAction = "/api/search/v2/doctor"
val strSearchDoctorClickAction = "search_result_doctor_click_item"
var (searchDoctorExposureVal,searchDoctorClickNum,searchDoctorExposureMapCount,searchDoctorExposureFilterCount) = GetSearchResultData(sc,strSearchDoctorExposureAction,strSearchDoctorClickAction,stat_date)
val strSearchHospitalExposureAction = "/api/search/v2/hospital"
val strSearchHospitalClickAction = "search_result_hospital_click_item"
var (searchHospitalExposureVal,searchHospitalClickNum,searchHospitalExposureMapCount,searchHospitalExposureFilterCount) = GetSearchResultData(sc,strSearchHospitalExposureAction,strSearchHospitalClickAction,stat_date)
val jigou_id = sc.sql(
s"""
|SELECT cl_id
|FROM online.ml_hospital_spam_pv_day
|WHERE partition_date>='20180402' AND partition_date<'${partition_date}'
|AND pv_ratio>=0.95
|UNION ALL
|SELECT cl_id
|FROM online.ml_hospital_spam_pv_month
|WHERE partition_date>='20171101' AND partition_date<'${partition_date}'
|AND pv_ratio>=0.95
|UNION ALL
|select device_id as cl_id from blacklist
""".stripMargin
)
jigou_id.createOrReplaceTempView("jigou_id")
val diary_clickSql = sc.sql(
s"""
|select
|count(1) click_num
|from online.tl_hdfs_maidian_view ov left join jigou_id
|on ov.cl_id = jigou_id.cl_id
|where ov.partition_date='${partition_date}'
|and ov.action='on_click_diary_card'
|and ov.params['page_name']='search_result_diary'
|and jigou_id.cl_id is null
""".stripMargin
)
val diary_clickArray = diary_clickSql.collect()
val diary_click_num = diary_clickArray(0).getAs[Long]("click_num")
val content_diary_clickSql = sc.sql(
s"""
|select
|count(1) click_num
|from online.tl_hdfs_maidian_view ov left join jigou_id
|on ov.cl_id = jigou_id.cl_id
|where ov.partition_date='${partition_date}'
|and ov.action='on_click_diary_card'
|and ov.params['page_name']='search_result_more'
|and jigou_id.cl_id is null
""".stripMargin
)
val content_diary_clickArray:Array[Row] = content_diary_clickSql.collect()
val content_diary_click_num:Long = content_diary_clickArray(0).getAs[Long]("click_num")
println("searchDiaryExposureVal:" + diaryExposureVal + "\tsearchDiaryClickNum:" + diary_click_num + "\tclickRate:" + (diary_click_num.floatValue()/diaryExposureVal.floatValue()).formatted("%.2f"))
println("searchMeigouExposureVal:" + meigouExposureVal + "\tsearchMeigouClickNum:" + meigouClickNum + "\tclickRate:" + (meigouClickNum.floatValue()/meigouExposureVal.floatValue()).formatted("%.2f"))
println("searchResultExposureVal:" + searchResultExposureVal + "\tsearchResultClickNum:" + (searchResultClickNum+content_diary_click_num) + "\tclickRate:" + ((searchResultClickNum+content_diary_click_num).floatValue()/searchResultExposureVal.floatValue()).formatted("%.2f"))
println("searchDoctorExposureVal:" + searchDoctorExposureVal + "\tsearchDoctorClickNum:" + searchDoctorClickNum + "\tclickRate:" + (searchDoctorClickNum.floatValue()/searchDoctorExposureVal.floatValue()).formatted("%.2f"))
println("searchHospitalExposureVal:" + searchHospitalExposureVal + "\tsearchHospitalClickNum:" + searchHospitalClickNum + "\tclickRate:" + (searchHospitalClickNum.floatValue()/searchHospitalExposureVal.floatValue()).formatted("%.2f"))
// val add_data = sc.sql(
// s"""
// |insert into table GetHiveSearchData_CTR(stat_date,diaryExposureVal,diaryClickNum,meigouExposureVal,meigouClickNum,searchResultExposureVal,searchResultClickNum,searchDoctorExposureVal,searchDoctorClickNum,searchHospitalExposureVal,searchHospitalClickNum)
// |values ('${stat_date}','${diaryExposureVal}','${(diary_click_num+diaryClickNum)}','${meigouExposureVal}','${meigouClickNum}','${searchResultExposureVal}','${(searchResultClickNum+content_diary_click_num)}','${searchDoctorExposureVal}','${searchDoctorClickNum}','${searchHospitalExposureVal}','${searchHospitalClickNum}')
// """.stripMargin
// )
import sc.implicits._
val result=List((stat_date,diaryExposureVal,(diary_click_num+diaryClickNum),meigouExposureVal,meigouClickNum,searchResultExposureVal,(searchResultClickNum+content_diary_click_num),searchDoctorExposureVal,searchDoctorClickNum,searchHospitalExposureVal,searchHospitalClickNum))
// val df_result = sc.createDataFrame(result).map(x=>GetHiveSearchData_temp(x(0).toString,x(1).toString,x(2).toString,x(3).toString,x(4).toString,x(5).toString,x(6).toString,x(7).toString,x(8).toString,x(9).toString,x(10).toString)).toDF()
val df_result = sc.sparkContext.parallelize(result).map(x=>(x._1,x._2,x._3,x._4,x._5,x._6,x._7,x._8,x._9,x._10,x._11)).toDF("stat_date","diaryExposureVal","diaryClickNum","meigouExposureVal","meigouClickNum","searchResultExposureVal","searchResultClickNum","searchDoctorExposureVal",
"searchDoctorClickNum","searchHospitalExposureVal","searchHospitalClickNum")
//
// GmeiConfig.writeToJDBCTable(df_result, table = "GetHiveSearchData_CTR", SaveMode.Append)
// GmeiConfig.writeToJDBCTable("jdbc:mysql://152.136.44.138:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",df_result, table="GetHiveSearchData_CTR",SaveMode.Append)
println("开始写入")
// GmeiConfig.writeToJDBCTable("jerry.jdbcuri",df_result, table="GetHiveSearchData_CTR",SaveMode.Append)
// println("写入完成")
GmeiConfig.writeToJDBCTable("jdbc:mysql://172.16.40.158:4000/jerry_prod?user=root&password=3SYz54LS9#^9sBvC&rewriteBatchedStatements=true",df_result, table="GetHiveSearchData_CTR",SaveMode.Append)
println("写入完成")
}
def GetSearchResultData(spark: SparkSession, strExposureAction:String, strClickAction:String,stat_date:String) = {
val partition_date = stat_date.replace("-","")
val exposureAccum = spark.sparkContext.longAccumulator("search exposure data")
val jigou_id = spark.sql(
s"""
|SELECT cl_id
|FROM online.ml_hospital_spam_pv_day
|WHERE partition_date>='20180402' AND partition_date<'${partition_date}'
|AND pv_ratio>=0.95
|UNION ALL
|SELECT cl_id
|FROM online.ml_hospital_spam_pv_month
|WHERE partition_date>='20171101' AND partition_date<'${partition_date}'
|AND pv_ratio>=0.95
|UNION ALL
|select device_id as cl_id from blacklist
""".stripMargin
)
jigou_id.createOrReplaceTempView("jigou_id")
val exposureSql = spark.sql(
s"""
|select action,user_id,city_id,app
|from online.tl_hdfs_backend_view ov left join jigou_id
|on ov.cl_id = jigou_id.cl_id
|where ov.action='$strExposureAction'
|and ov.partition_date='${partition_date}'
|and jigou_id.cl_id is null
""".stripMargin
)
val exposureMapResult = exposureSql.rdd.map(row => {
//val jsonObj = JSON.parseFull(row.getAs[Map[String,Any]]("app").toString())
val rowAppFieldMap:Map[String,Any] = row.getAs[Map[String,Any]]("app")
if (rowAppFieldMap.nonEmpty)
{
// jsonMap:Map[String,Any] = jsonObj.get.asInstanceOf[Map[String,Any]]
if (rowAppFieldMap.contains("exposure_data")){
val exposure_data_lists:List[Any] = JSON.parseFull(rowAppFieldMap("exposure_data").toString).get.asInstanceOf[List[Any]]
if (exposure_data_lists.length > 0){
exposure_data_lists.foreach(exposure_item=>{
if (exposure_item!=None && exposure_item.toString.nonEmpty){
val exposureItemMap:Map[String,Any] = exposure_item.asInstanceOf[Map[String,Any]]
if (exposureItemMap.contains("list_ids")){
//val exposure_list_ids:List[Any] = exposureItemMap.get("list_ids").get.asInstanceOf[List[Any]]
val exposure_list_ids:List[Any] = exposureItemMap("list_ids").asInstanceOf[List[Any]]
exposureAccum.add(exposure_list_ids.length)
}
}else{
None
}
})
exposure_data_lists
}else{
None
}
}
}else{
None
}
})
//must add cache
exposureMapResult.cache()
val exposureFilterResult = exposureMapResult.filter(_.!=(None))
//val exposureArray:Array[Any] = exposureFilterResult.collect()
//exposureArray.foreach(item => println(item.toString))
val exposureMapCount:Long = exposureMapResult.count()
val exposureFilterCount:Long = exposureFilterResult.count()
val clickSql = spark.sql(
s"""
|select
|count(1) click_num
|from online.tl_hdfs_maidian_view ov left join jigou_id
|on ov.cl_id = jigou_id.cl_id
|where ov.partition_date='${partition_date}'
|and ov.action='$strClickAction'
|and jigou_id.cl_id is null
""".stripMargin
)
val clickArray:Array[Row] = clickSql.collect()
val click_num:Long = clickArray(0).getAs[Long]("click_num")
(exposureAccum.value,click_num,exposureMapCount,exposureFilterCount)
}
// GmeiConfig.writeToJDBCTable(df_result, table = "Repeated_content_recommendation_moreday", SaveMode.Append)
// exp_diary.show()
// exp_diary.createOrReplaceTempView("exp_diary")
// GmeiConfig.writeToJDBCTable(df, table = "Repeated_evaluation_indicator_moreday", SaveMode.Append)
}
}
object find_reason {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)
case class Params(env: String = "dev",
date: String = "2018-08-01"
) extends AbstractParams[Params] with Serializable
val defaultParams = Params()
val parser = new OptionParser[Params]("Feed_EDA") {
head("WeafareStat")
opt[String]("env")
.text(s"the databases environment you used")
.action((x, c) => c.copy(env = x))
opt[String] ("date")
.text(s"the date you used")
.action((x,c) => c.copy(date = x))
note(
"""
|For example, the following command runs this app on a tidb dataset:
|
| spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
""".stripMargin +
s"| --env ${defaultParams.env}"
)
}
def main(args: Array[String]): Unit = {
parser.parse(args, defaultParams).map { param =>
GmeiConfig.setup(param.env)
val spark_env = GmeiConfig.getSparkSession()
val sc = spark_env._2
// val ti = new TiContext(sc)
sc.sql("use jerry_prod")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "diary_video")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
// ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
// val stat_date = GmeiConfig.getMinusNDate(1)
val stat_date=param.date
val partition_date = stat_date.replace("-","")
//机构id
val blacklist = sc.sql(
s"""
|select device_id from blacklist
""".stripMargin
)
blacklist.createOrReplaceTempView("blacklist")
val agency_id = sc.sql(
s"""
|SELECT DISTINCT(cl_id) as device_id
|FROM online.ml_hospital_spam_pv_day
|WHERE partition_date >= '20180402'
|AND partition_date <= '${partition_date}'
|AND pv_ratio >= 0.95
|UNION ALL
|SELECT DISTINCT(cl_id) as device_id
|FROM online.ml_hospital_spam_pv_month
|WHERE partition_date >= '20171101'
|AND partition_date <= '${partition_date}'
|AND pv_ratio >= 0.95
""".stripMargin
)
// agency_id.show()
agency_id.createOrReplaceTempView("agency_id")
//每日新用户
val device_id_newUser = sc.sql(
s"""
|select distinct(os.device_id) as device_id
|from online.ml_device_day_active_status os left join blacklist
|on os.device_id = blacklist.device_id
|where os.active_type != '4'
|and os.first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
| ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
| ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
| ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
| ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
| ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
| ,'promotion_shike','promotion_julang_jl03','','unknown')
|and os.partition_date ='${partition_date}'
|and blacklist.device_id is null
""".stripMargin
)
// device_id_newUser.show()
device_id_newUser.createOrReplaceTempView("device_id_new")
//每日老用户
val device_id_oldUser = sc.sql(
s"""
|select distinct(os.device_id) as device_id
|from online.ml_device_day_active_status os left join blacklist
|on os.device_id=blacklist.device_id
|where os.active_type = '4'
|and os.first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
| ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
| ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
| ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
| ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
| ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
| ,'promotion_shike','promotion_julang_jl03','','unknown')
|and os.partition_date ='${partition_date}'
|and blacklist.device_id is null
""".stripMargin
)
// device_id_oldUser.show()
device_id_oldUser.createOrReplaceTempView("device_id_old")
val all_clk = sc.sql(
s"""
|select ov.cl_id as device_id
|from online.tl_hdfs_maidian_view ov left join agency_id
|on ov.cl_id = agency_id.device_id
|where ov.action = 'on_click_diary_card'
|and ov.cl_id != "NULL"
|and ov.params['tab_name'] = '精选'
|and ov.params['page_name'] = 'home'
|and ov.partition_date='${partition_date}'
|and agency_id.device_id is null
""".stripMargin
)
// all_clk.show()
all_clk.createOrReplaceTempView("all_clk_diary_card")
//1.当天老用户中的点击用户数
val old_clk_count = sc.sql(
s"""
|select '${stat_date}' as stat_date,count(distinct(oc.device_id)) as old_clk_count
|from all_clk_diary_card oc inner join device_id_old
|on oc.device_id = device_id_old.device_id
""".stripMargin
)
// old_clk_count.show()
//1.1有点击的老用户
val old_clk_device = sc.sql(
s"""
|select distinct(oc.device_id) as device_id
|from all_clk_diary_card oc inner join device_id_old
|on oc.device_id = device_id_old.device_id
""".stripMargin
)
old_clk_device.createOrReplaceTempView("old_clk_device")
//1.1无点击的老用户
val old_noclk_device = sc.sql(
s"""
|select device_id
|from device_id_old
|except
|select device_id
|from old_clk_device
""".stripMargin
)
old_noclk_device.show()
//2.当天新用户中的点击用户数
// val new_clk_count = sc.sql(
// s"""
// |select '${stat_date}' as stat_date,count(distinct(oc.device_id)) as new_clk_count
// |from all_clk_diary_card oc inner join device_id_new
// |on oc.device_id = device_id_new.device_id
// """.stripMargin
// )
////2.1 有点击的新用户
// val new_clk_device = sc.sql(
// s"""
// |select distinct(oc.device_id) as device_id
// |from all_clk_diary_card oc inner join device_id_new
// |on oc.device_id = device_id_new.device_id
// """.stripMargin
// )
// new_clk_device.createOrReplaceTempView("new_clk_device")
//
//
// //3.当天老用户数
//
// val old_count = sc.sql(
// s"""
// |select '${stat_date}' as stat_date,count(distinct(dio.device_id)) as old_count
// |from device_id_old dio left join agency_id
// |on dio.device_id = agency_id.device_id
// |where agency_id.device_id is null
// """.stripMargin
// )
//
// //4.当天新用户数
// val new_count = sc.sql(
// s"""
// |select '${stat_date}' as stat_date,count(distinct(din.device_id)) as new_count
// |from device_id_new din left join agency_id
// |on din.device_id = agency_id.device_id
// |where agency_id.device_id is null
// """.stripMargin
// )
//
// //5.有点击老用户的曝光数
// val exp_clkold_count = sc.sql(
// s"""
// |select '${stat_date}' as stat_date,count(dp.device_id) as imp_clkold_count
// |from data_feed_exposure_precise dp inner join old_clk_device
// |on dp.device_id = old_clk_device.device_id
// |where stat_date='${stat_date}'
// |group by stat_date
// """.stripMargin
// )
//
// //6.有点击新用户的曝光数
// val exp_clknew_count = sc.sql(
// s"""
// |select '${stat_date}' as stat_date,count(dp.device_id) as imp_clknew_count
// |from data_feed_exposure_precise dp inner join new_clk_device
// |on dp.device_id = new_clk_device.device_id
// |where stat_date='${stat_date}'
// |group by stat_date
// """.stripMargin
// )
//
// val result = old_clk_count.join(new_clk_count,"stat_date")
// .join(old_count,"stat_date")
// .join(new_count,"stat_date")
// .join(exp_clkold_count,"stat_date")
// .join(exp_clknew_count,"stat_date")
//
// GmeiConfig.writeToJDBCTable(result, "device_clk_imp_reason", SaveMode.Append)
}
}
}