userProfile.py 15.6 KB
from utils import con_sql
from datetime import datetime
from config import *
import pandas as pd
import os
import time
import pymysql
import time


def fetch_qa(device_id, card_type, size):
    try:
        key = '{device_id}-{card_type}-{date}'.format(device_id=device_id,
                                                      card_type=card_type, date=RecommendFeed.current_date())
        if (device_id != '0'):

            search_qa_recommend_key = "TS:search_recommend_answer_queue:device_id:" + str(device_id)
            search_qa_recommend_list = list()
            search_cursor_ts = 0
            if redis_client.exists(search_qa_recommend_key):
                search_qa_recommend_dict = redis_client.hgetall(search_qa_recommend_key)
                if b'cursor' in search_qa_recommend_dict:
                    search_cursor_ts = json.loads(search_qa_recommend_dict[b'cursor'])
                    if search_cursor_ts < 10:
                        search_qa_recommend_list = json.loads(search_qa_recommend_dict[b'answer_queue'])
                        if search_cursor_ts < len(search_qa_recommend_list):
                            size = size - 1

        try:
            que = DeviceQAQueue.objects.get(device_id=device_id)
        except DeviceQAQueue.DoesNotExist:
            que = AnswerQueue.objects.last()
        if not que:
            return []
        que = list(filter(None, que.queue.split(',')))

        # adjust args.
        cursor = redis_client.get(key) or 0
        cursor = int(cursor) % len(que)
        size = min(size, len(que))
        # redis_client.set(key, cursor + size, ex=24 * 60 * 60)
        data = list(islice(cycle(que), cursor, cursor + size))
        data = list(map(int, data))
        if cursor + 2 * size < len(que):
            redis_client.set(key, cursor + size, ex=24 * 60 * 60)
        else:
            try:
                context.request_logger.app(reset_answer_queue=True)
                cursor = 0
                redis_client.set(key, cursor, ex=24 * 60 * 60)
            except:
                redis_client.set(key, cursor + size, ex=24 * 60 * 60)

        if device_id != '0':
            if len(search_qa_recommend_list) > 0 and search_cursor_ts < len(search_qa_recommend_list):
                queue = search_qa_recommend_list[search_cursor_ts:search_cursor_ts + 1]
                queue.extend(data)
                data = queue
                new_search_cursor = search_cursor_ts + 1
                redis_client.hset(search_qa_recommend_key, 'cursor', new_search_cursor)
                redis_client.expire(search_qa_recommend_key, 30 * 24 * 60 * 60)
            read_qa_key = "TS:recommend_answer_set:device_id:" + str(device_id)
            if len(data) > 0:
                redis_client.sadd(read_qa_key, *data)
        return data
    except:
        logging_exception()
        return []

def fetch_user_topic(device_id, card_type, size):
    try:
        key = '{device_id}-{card_type}-{date}'.format(device_id=device_id, card_type=card_type,
                                                      date=RecommendFeed.current_date())

        if (device_id != '0') and size >= 2:

            search_topic_recommend_key = "TS:search_recommend_tractate_queue:device_id:" + str(device_id)
            search_topic_recommend_list = list()
            search_cursor_ts = 0
            if redis_client.exists(search_topic_recommend_key):
                search_topic_recommend_dict = redis_client.hgetall(search_topic_recommend_key)
                if b'cursor' in search_topic_recommend_dict:
                    search_cursor_ts = json.loads(search_topic_recommend_dict[b'cursor'])
                    if search_cursor_ts < 30:
                        search_topic_recommend_list = json.loads(search_topic_recommend_dict[b'tractate_queue'])
                        if search_cursor_ts < len(search_topic_recommend_list):
                            size = size - 2

        try:
            que = DeviceUserTopicQueue.objects.get(device_id=device_id)
        except DeviceUserTopicQueue.DoesNotExist:
            que = UserTopicQueue.objects.last()
        if not que:
            return []
        que = list(filter(None, que.queue.split(',')))

        # adjust args.
        cursor = redis_client.get(key) or 0
        cursor = int(cursor) % len(que)
        size = min(size, len(que))
        data = list(islice(cycle(que), cursor, cursor + size))
        data = list(map(int, data))

        if cursor + 2 * size < len(que):
            redis_client.set(key, cursor + size, ex=24 * 60 * 60)
        else:
            try:
                context.request_logger.app(reset_queue=True)
                cursor = 0
                redis_client.set(key, cursor, ex=24 * 60 * 60)
            except:
                redis_client.set(key, cursor + size, ex=24 * 60 * 60)

        if device_id != '0' and size >= 2:
            if len(search_topic_recommend_list) > 0 and search_cursor_ts < len(search_topic_recommend_list):
                queue = search_topic_recommend_list[search_cursor_ts:search_cursor_ts + 2]
                queue.extend(data)
                data = queue
                new_search_cursor = search_cursor_ts + 2
                redis_client.hset(search_topic_recommend_key, 'cursor', new_search_cursor)
                redis_client.expire(search_topic_recommend_key, 30 * 24 * 60 * 60)
            read_topic_key = "TS:recommend_tractate_set:device_id:" + str(device_id)
            if len(data) > 0:
                redis_client.sadd(read_topic_key, *data)
        return data

    except:
        logging_exception()
        return []


 def fetch_diary(cls, device_id, card_type, city_id, size):
        # first, we fetch data from personal-queue  city-queue, if not both, get data
        # from world queue.
        user_portrait_diary_part_list = list()
        click_diary_size = 1
        search_diary_size = 4
        if device_id != '0':
            user_portrait_diary_key = 'user_portrait_recommend_diary_queue:device_id:%s:%s' % (device_id, datetime.datetime.now().strftime('%Y-%m-%d'))
            if redis_client.exists(user_portrait_diary_key):
                user_portrait_diary_dict = redis_client.hgetall(user_portrait_diary_key)
                user_portrait_cursor = str(user_portrait_diary_dict[b'cursor'],encoding='utf-8')
                if user_portrait_cursor == '0':
                    if b'len_cursor' in user_portrait_diary_dict.keys():
                        user_portrait_diary_list = json.loads(user_portrait_diary_dict[b'diary_queue'])
                        len_cursor = str(user_portrait_diary_dict[b'len_cursor'],encoding='utf-8')
                        len_cursor = int(len_cursor)
                        if len(user_portrait_diary_list) - len_cursor >size:
                            user_portrait_diary_part_list = user_portrait_diary_list[len_cursor:len_cursor+size]
                            redis_client.hset(user_portrait_diary_key,'len_cursor',len_cursor+size)
                            size = 0
                        else:
                            user_portrait_diary_list = json.loads(user_portrait_diary_dict[b'diary_queue'])
                            diary_list_len = len(user_portrait_diary_list) - len_cursor
                            size = size - diary_list_len
                            user_portrait_diary_part_list = user_portrait_diary_list[len_cursor:len_cursor + diary_list_len]
                            redis_client.hset(user_portrait_diary_key, 'len_cursor', len_cursor + diary_list_len)
                            user_portrait_cursor = int(user_portrait_cursor) + 1
                            redis_client.hset(user_portrait_diary_key, 'cursor', user_portrait_cursor)
                    else:
                        user_portrait_diary_part_list = json.loads(user_portrait_diary_dict[b'diary_queue'])
                        size = size - len(user_portrait_diary_part_list)
                        user_portrait_cursor = int(user_portrait_cursor) + 1
                        redis_client.hset(user_portrait_diary_key, 'cursor', user_portrait_cursor)

        try:

            # obj = DeviceDiaryQueue.objects.filter(device_id=device_id, city_id=city_id).first()
            (local, nearby, nation, megacity, city_id) = cls.fetch_device_diary_queue_data(city_id, device_id)
            if len(local) == 0 and len(nearby) == 0 and len(nation) == 0 and len(megacity) == 0:
                (local, nearby, nation, megacity, city_id) = cls.fetch_diary_queue_data(city_id)
            # if not obj:
            #     (local, nearby, nation, megacity,city_id) = cls.fetch_diary_queue_data(city_id)
            # else:
            #     local = list(filter(None, obj.native_queue.split(','))) if obj.native_queue else []
            #     nearby = list(filter(None, obj.nearby_queue.split(','))) if obj.nearby_queue else []
            #     nation = list(filter(None, obj.nation_queue.split(','))) if obj.nation_queue else []
            #     megacity = list(filter(None, obj.megacity_queue.split(','))) if obj.megacity_queue else []
        except:
            logging_exception()
            (local, nearby, nation, megacity, city_id) = cls.fetch_diary_queue_data(city_id)

        if(device_id!='0'):

            search_diary_recommend_key = "TS:search_recommend_diary_queue:device_id:" + str(device_id)
            search_diary_recommend_list = list()
            search_cursor_ts = 0
            if redis_client.exists(search_diary_recommend_key) and size >3:
                search_diary_recommend_dict = redis_client.hgetall(search_diary_recommend_key)
                if b'cursor' in search_diary_recommend_dict:
                    search_cursor_ts = json.loads(search_diary_recommend_dict[b'cursor'])
                    search_diary_recommend_list = json.loads(search_diary_recommend_dict[b'diary_queue'])
                    if search_cursor_ts +search_diary_size < len(search_diary_recommend_list) :
                            size = size - search_diary_size

        if (device_id != '0') :
            diary_recommend_key = "TS:recommend_diary_queue:device_id:" + str(device_id)
            diary_recommend_list = list()
            if redis_client.exists(diary_recommend_key) and size > 0:
                    diary_recommend_dict = redis_client.hgetall(diary_recommend_key)
                    diary_recommend_list = json.loads(diary_recommend_dict[b'diary_queue'])
                    if len(diary_recommend_list)>0:
                        size = size -click_diary_size



        key = '{device_id}-{city_id}-{date}'.format(device_id=device_id,
                                                    city_id=city_id, date=RecommendFeed.current_date())
        # strategy rule: when user refresh over 30 loadings, reset native nearby nation queue cursor.
        counter_key = key + '-counter_v1'
        counter = redis_client.incr(counter_key)
        if counter == 1:
            redis_client.expire(counter_key, 24 * 60 * 60)
        cursor_key = key + '-cursor_v1'
        cursor = redis_client.get(cursor_key) or b'0-0-0-0'
        # if counter > 30:
        #     cursor = b'0-0-0-0'
        #     redis_client.delete(counter_key)
        cx, cy, cm, cz = map(int, cursor.split(b'-'))

        x, y, m, z = cls.get_city_scale(city_id)
        data, ncx, ncy, ncm, ncz = cls.get_scale_data(
            local, nearby, nation, megacity,
            cx, cy, cm, cz,
            x, y, z, m, size
        )

        if ncx == cx and ncy == cy:  # native queue and nearby queue
            logger.info("diary queue reach end,cx:%d,cy:%d,cm:%d,cz:%d",cx,cy,cm,cz)
            # redis_client.delete(counter_key)
            # data, ncx, ncy, ncm, ncz = cls.get_scale_data(
            #     local, nearby, nation, megacity,
            #     0, 0, 0, 0,
            #     x, y, z, m, size
            # )
            ncx = ncy = ncm = ncz = 0

        val = '-'.join(map(str, [ncx, ncy, ncm, ncz]))
        redis_client.set(cursor_key, val, ex=24 * 60 * 60)
        data = list(map(int, data))


        if device_id != '0':
            if  search_cursor_ts<len(search_diary_recommend_list)-search_diary_size:
                queue = search_diary_recommend_list[search_cursor_ts:search_cursor_ts+search_diary_size]
                queue.extend(data)
                data = queue
                new_search_cursor = search_cursor_ts +search_diary_size
                redis_client.hset(search_diary_recommend_key,'cursor',new_search_cursor)
                redis_client.expire(search_diary_recommend_key,30*24*60*60)



            if len(diary_recommend_list) >0:
                diary_id = diary_recommend_list.pop(0)
                data.insert(0,diary_id)
                if len(diary_recommend_list)>0:
                   diary_recommend_list_json = json.dumps(diary_recommend_list)
                   redis_client.hset(diary_recommend_key,'diary_queue',diary_recommend_list_json)
                   redis_client.expire(diary_recommend_key,30*24*60*60)
                else:
                   redis_client.delete(diary_recommend_key)

            if len(user_portrait_diary_part_list)>0:
                user_portrait_diary_part_list.extend(data)
                data = user_portrait_diary_part_list
            #已读
            read_diary_key = "TS:recommend_diary_set:device_id:" + str(device_id)
            if len(data)>0:
                 redis_client.sadd(read_diary_key,*data)
        return data

 def get_scale_data(local, nearby, nation, megacity, cx, cy, cm, cz, x, y, z, m, size):
        """

        :param local:           local diary queue
        :param nearby:          nearby diary queue
        :param nation:          nation diary queue
        :param megacity:        megacity diary queue
        :param cx:              seen local diary offset
        :param cy:              seen nearby diary offset
        :param cz:              seen nation diary offset
        :param cm:              seen megacity diary offset
        :param x:               local diary scale factor
        :param y:               nearby diary scale factor
        :param z:               nation diary scale factor
        :param m:               megacity diary scale factor
        :param size:            nubmer of diary
        :return:
        """
        # 本地 临近 特大城市 全国 四个层级 都按照的是四舍五入取得方式
        # 针对出现的问题,本次相应的优化是:
        # 1、如果出现两个层级为零,且有剩余坑位时,则按照本地 临近 全国的优先级,先给优先级高且为零的层级一个坑位。
        # 2、如果所有层级都非零,且有剩余坑位时,则优先给权重占比大的层级一个坑位。
        # 3、如果只有一个层级为零,且有剩余坑位时,则优先填充权重占比大的层级一个坑位。
        nx = int(round(x * 1.0 / (x + y + z + m) * size))
        ny = int(round(y * 1.0 / (x + y + z + m) * size))
        nz = int(round(z * 1.0 / (x + y + z + m) * size))
        nm = int(round(m * 1.0 / (x + y + z + m) * size))
        nxyz = [nx, ny, nm, nz]
        xyz = [x, y, m, z]
        counter = Counter([nx, ny, nm, nz])
        if counter[0] == 2:
            nxyz[nxyz.index(0)] += size - sum(nxyz)
        else:
            nxyz[xyz.index(max(xyz))] += size - sum(nxyz)
        nx, ny, nm, nz = nxyz

        slocal = local[cx:cx + nx]
        cx = min(cx + nx, len(local))
        ny += (nx - len(slocal))

        snearby = nearby[cy:cy + ny]
        cy = min(cy + ny, len(nearby))
        nm += (ny - len(snearby))

        smegacity = megacity[cm: cm + nm]
        cm = min(cm + nm, len(megacity))
        nz += (nm - len(smegacity))

        snation = nation[cz:cz + nz]
        cz = min(cz + nz, len(nation))

        return chain(slocal, snearby, smegacity, snation), cx, cy, cm, cz