1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#!/srv/envs/nvwa/bin/python
# -*- coding: utf-8 -*-
import pickle
import xlearn as xl
import pandas as pd
import pymysql
from datetime import datetime
# utils 包必须要导,否则ffm转化时用到的pickle找不到utils,会报错
import utils
import warnings
from multiprocessing import Pool
from userProfile import get_active_users
from sklearn.preprocessing import MinMaxScaler
import time
from config import *
from utils import judge_online,con_sql
def get_video_id(cache_video_id):
if flag:
db = pymysql.connect(host=ONLINE_EAGLE_HOST, port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='eagle')
else:
# 本地数据库,没有密码,可能报错
db = pymysql.connect(host=LOCAL_EAGLE_HOST, port=4000, user='root', db='eagle')
cursor = db.cursor()
sql = "select diary_id from feed_diary_boost;"
try:
cursor.execute(sql)
result = cursor.fetchall()
df = pd.DataFrame(list(result))
except Exception:
print("发生异常", Exception)
df = pd.DataFrame()
finally:
db.close()
if df.empty:
return cache_video_id
else:
video_id = df[0].values.tolist()
print("videoid")
print(video_id[:2])
return video_id
# 将device_id、city_id拼接到对应的城市热门日记表。注意:下面预测集特征顺序要与训练集保持一致
def feature_en(x_list, device_id):
data = pd.DataFrame(x_list)
# 下面的列名一定要用cid,不能用diaryid,因为预测模型用到的ffm上是cid
data = data.rename(columns={0: "cid"})
data["device_id"] = device_id
now = datetime.now()
data["hour"] = now.hour
data["minute"] = now.minute
data.loc[data["hour"] == 0, ["hour"]] = 24
data.loc[data["minute"] == 0, ["minute"]] = 60
data["hour"] = data["hour"].astype("category")
data["minute"] = data["minute"].astype("category")
# 虽然预测y,但ffm转化需要y,并不影响预测结果
data["y"] = 0
print("done 特征工程")
return data
# 把ffm.pkl load进来,将上面的数据转化为ffm格式
def transform_ffm_format(df,queue_name,device_id):
with open(path + "ffm.pkl", "rb") as f:
ffm_format_pandas = pickle.load(f)
data = ffm_format_pandas.native_transform(df)
predict_file_name = path + "result/{0}_{1}.csv".format(device_id, queue_name)
data.to_csv(predict_file_name, index=False, header=None)
print("done ffm")
return predict_file_name
def predict(queue_name,queue_arg,device_id):
data = feature_en(queue_arg[0], device_id)
data_file_path = transform_ffm_format(data,queue_name,device_id)
ffm_model = xl.create_ffm()
ffm_model.setTest(data_file_path)
ffm_model.setSigmoid()
ffm_model.predict(path + "model.out",
path + "result/output{0}_{1}.csv".format(device_id, queue_name))
def save_result(queue_name,queue_arg,device_id):
score_df = pd.read_csv(path + "result/output{0}_{1}.csv".format(device_id, queue_name), header=None)
mm_scaler = MinMaxScaler()
mm_scaler.fit(score_df)
score_df = pd.DataFrame(mm_scaler.transform(score_df))
score_df = score_df.rename(columns={0: "score"})
score_df["cid"] = queue_arg[0]
# 去掉cid前面的"diary|"
score_df["cid"] = score_df["cid"].apply(lambda x:x[6:])
# print("score_df:")
# print(score_df.head(1))
# print(score_df.shape)
if queue_arg[1] != []:
df_temp = pd.DataFrame(queue_arg[1]).rename(columns={0: "cid"})
df_temp["score"] = 0
df_temp = df_temp.sort_index(axis=1,ascending=False)
df_temp["cid"] = df_temp["cid"].apply(lambda x: x[6:])
predict_score_df = score_df.append(df_temp)
return predict_score_df
else:
return score_df
def get_score(queue_arg):
if flag:
db = pymysql.connect(host=SCORE_DB_ONLINE["host"], port=SCORE_DB_ONLINE["port"],
user=SCORE_DB_ONLINE["user"],passwd=SCORE_DB_ONLINE["passwd"],
db=SCORE_DB_ONLINE["db"])
else:
db = pymysql.connect(host=SCORE_DB_LOCAL["host"], port=SCORE_DB_LOCAL["port"],
user=SCORE_DB_LOCAL["user"], passwd=SCORE_DB_LOCAL["passwd"],
db=SCORE_DB_LOCAL["db"])
# 去除diary_id 前面的"diary|"
diary_list = tuple(list(map(lambda x:x[6:],queue_arg[2])))
sql = "select score,diary_id from biz_feed_diary_score where diary_id in {};".format(diary_list)
score_df = con_sql(db,sql)
print("get score")
return score_df
def update_dairy_queue(score_df,predict_score_df,total_video_id):
diary_id = score_df["cid"].values.tolist()
if total_video_id != []:
video_id = list(set(diary_id)&set(total_video_id))
if len(video_id)>0:
not_video = list(set(diary_id) - set(video_id))
# 为了相加时cid能够匹配,先把cid变成索引
not_video_df = score_df.loc[score_df["cid"].isin(not_video)].set_index(["cid"])
not_video_predict_df = predict_score_df.loc[predict_score_df["cid"].isin(not_video)].set_index(["cid"])
not_video_df["score"] = not_video_df["score"] + not_video_predict_df["score"]
not_video_df = not_video_df.sort_values(by="score", ascending=False)
video_df = score_df.loc[score_df["cid"].isin(video_id)].set_index(["cid"])
video_predict_df = predict_score_df.loc[predict_score_df["cid"].isin(video_id)].set_index(["cid"])
video_df["score"] = video_df["score"] + video_predict_df["score"]
video_df = video_df.sort_values(by="score", ascending=False)
not_video_id = not_video_df.index.tolist()
video_id = video_df.index.tolist()
new_queue = not_video_id
i = 1
for j in video_id:
new_queue.insert(i, j)
i += 5
print("分数合并成功")
return new_queue
# 如果取交集后没有视频日记
else:
score_df = score_df.set_index(["cid"])
predict_score_df = predict_score_df.set_index(["cid"])
score_df["score"]=score_df["score"]+predict_score_df["score"]
score_df = score_df.sort_values(by="score", ascending=False)
print("分数合并成功1")
return score_df.index.tolist()
# 如果total_video_id是空列表
else:
score_df = score_df.set_index(["cid"])
predict_score_df = predict_score_df.set_index(["cid"])
score_df["score"] = score_df["score"] + predict_score_df["score"]
score_df = score_df.sort_values(by="score", ascending=False)
# print("分数合并成功1")
return score_df.index.tolist()
def update_sql_dairy_queue(queue_name, diary_id,device_id, city_id):
if flag:
db = pymysql.connect(host=QUEUE_ONLINE_HOST, port=3306, user='doris', passwd='o5gbA27hXHHm',
db='doris_prod')
else:
db = pymysql.connect(host=LOCAL_HOST, port=3306, user='work',passwd='workwork', db='doris_test')
cursor = db.cursor()
id_str = str(diary_id[0])
for i in range(1, len(diary_id)):
id_str = id_str + "," + str(diary_id[i])
sql = "update device_diary_queue set {}='{}' where device_id = '{}' and city_id = '{}'".format\
(queue_name,id_str,device_id, city_id)
cursor.execute(sql)
db.commit()
db.close()
print("成功写入diary_id")
def queue_compare(old_list, new_list):
# 去掉前面的"diary|"
old_list = list(map(lambda x: int(x[6:]),old_list))
# print("旧表前十个")
# print(old_list[:10])
# print("新表前十个")
# print(new_list[:10])
temp = list(range(len(old_list)))
x_dict = dict(zip(old_list, temp))
temp = list(range(len(new_list)))
y_dict = dict(zip(new_list, temp))
i = 0
for key in x_dict.keys():
if x_dict[key] != y_dict[key]:
i += 1
if i >0:
print("日记队列更新前日记总个数{},位置发生变化个数{},发生变化率{}%".format(len(old_list), i,
round(i / len(old_list) * 100), 2))
return True
else:
return False
def get_queue(device_id, city_id,queue_name):
if flag:
db = pymysql.connect(host=QUEUE_ONLINE_HOST, port=3306, user='doris',passwd='o5gbA27hXHHm',
db='doris_prod')
else:
db = pymysql.connect(host=LOCAL_HOST, port=3306, user='work',
passwd='workwork', db='doris_test')
cursor = db.cursor()
sql = "select {} from device_diary_queue " \
"where device_id = '{}' and city_id = '{}';".format(queue_name,device_id, city_id)
cursor.execute(sql)
result = cursor.fetchall()
df = pd.DataFrame(list(result))
if df.empty:
print("该用户对应的日记为空")
return False
else:
queue_list = df.loc[0, 0].split(",")
queue_list = list(map(lambda x: "diary|" + str(x), queue_list))
db.close()
print("成功获取queue")
return queue_list
def pipe_line(queue_name, queue_arg, device_id,total_video_id):
predict(queue_name, queue_arg, device_id)
predict_score_df = save_result(queue_name, queue_arg, device_id)
score_df = get_score(queue_arg)
if score_df.empty:
print("获取的日记列表是空")
return False
else:
score_df = score_df.rename(columns={0: "score", 1: "cid"})
diary_queue = update_dairy_queue(score_df, predict_score_df,total_video_id)
return diary_queue
def user_update(device_id, city_id, queue_name,data_set_cid,total_video_id):
queue_list = get_queue(device_id, city_id, queue_name)
if queue_list:
queue_predict = list(set(queue_list) & set(data_set_cid))
queue_not_predict = list(set(queue_list) - set(data_set_cid))
queue_arg = [queue_predict, queue_not_predict, queue_list]
if queue_predict != []:
diary_queue = pipe_line(queue_name, queue_arg, device_id,total_video_id)
if diary_queue and queue_compare(queue_list, diary_queue):
update_sql_dairy_queue(queue_name, diary_queue, device_id, city_id)
print("更新结束")
else:
print("获取的日记列表是空或者日记队列顺序没有变化,所以不更新日记队列")
else:
print("预测集是空,不需要预测")
else:
print("日记队列为空")
def multi_proecess_update(device_id, city_id, data_set_cid,total_video_id):
queue_name_list = ["native_queue","nearby_queue","nation_queue","megacity_queue"]
pool = Pool(4)
for queue_name in queue_name_list:
pool.apply_async(user_update, (device_id, city_id, queue_name,data_set_cid,total_video_id,))
pool.close()
pool.join()
if __name__ == "__main__":
warnings.filterwarnings("ignore")
flag,path = judge_online()
# 增加缓存日记视频列表
cache_video_id = []
cache_device_city_list = []
differ = 0
while True:
start = time.time()
device_city_list = get_active_users(flag, path, differ)
time1 = time.time()
print("获取用户活跃表耗时:{}秒".format(time1-start))
# 过滤掉5分钟内预测过的用户
device_city_list = list(set(tuple(device_city_list))-set(tuple(cache_device_city_list)))
print("device_city_list")
print(device_city_list)
if datetime.now().minute % 5 == 0:
cache_device_city_list = []
if device_city_list != []:
data_set_cid = pd.read_csv(path + "data_set_cid.csv")["cid"].values.tolist()
total_video_id = get_video_id(cache_video_id)
cache_video_id = total_video_id
cache_device_city_list.extend(device_city_list)
for device_city in device_city_list:
multi_proecess_update(device_city[0], device_city[1], data_set_cid, total_video_id)
differ = time.time()-start
print("differ:{}秒".format(differ))
# # TODO 上线后把预测用户改成多进程预测