1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
package com.gmei
import java.io.Serializable
import java.text.SimpleDateFormat
import breeze.linalg.split
import com.gmei.WeafareStat.{defaultParams, parser}
import org.apache.spark.sql.{Row, SaveMode, SparkSession, TiContext}
import org.apache.log4j.{Level, Logger}
import scopt.OptionParser
import com.gmei.lib.AbstractParams
import com.github.nscala_time.time.Imports._
import java.text.SimpleDateFormat
import java.util.Date
import scala.util.parsing.json.JSON
object temp_count {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)
case class Params(env: String = "dev",
date: String = "2018-08-01"
) extends AbstractParams[Params] with Serializable
val defaultParams = Params()
val parser = new OptionParser[Params]("Feed_EDA") {
head("WeafareStat")
opt[String]("env")
.text(s"the databases environment you used")
.action((x, c) => c.copy(env = x))
opt[String] ("date")
.text(s"the date you used")
.action((x,c) => c.copy(date = x))
note(
"""
|For example, the following command runs this app on a tidb dataset:
|
| spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
""".stripMargin +
s"| --env ${defaultParams.env}"
)
}
def main(args: Array[String]): Unit = {
parser.parse(args, defaultParams).map { param =>
GmeiConfig.setup(param.env)
val spark_env = GmeiConfig.getSparkSession()
val sc = spark_env._2
val ti = new TiContext(sc)
ti.tidbMapTable(dbName = "jerry_prod", tableName = "diary_video")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")
val stat_date = GmeiConfig.getMinusNDate(1)
// val stat_date = param.date
//println(param.date)
val partition_date = stat_date.replace("-","")
val decive_id_oldUser = sc.sql(
s"""
|select distinct(device_id) as device_id
|from online.ml_device_day_active_status
|where active_type = '4'
|and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
| ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
| ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
| ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
| ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
| ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
| ,'promotion_shike','promotion_julang_jl03','','unknown')
|and partition_date ='${partition_date}'
""".stripMargin
)
decive_id_oldUser.createOrReplaceTempView("device_id_old")
val clk_count_oldUser = sc.sql(
s"""
|select '${stat_date}' as stat_date, count(jd.cid_id) as clk_count_oldUser
|from data_feed_click jd inner join device_id_old
|on jd.device_id = device_id_old.device_id
|where (jd.cid_type = 'diary' or jd.cid_type = 'diary_video')
|and jd.device_id not in (select device_id from blacklist)
|and jd.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
|and jd.stat_date ='${stat_date}'
""".stripMargin
)
val imp_count_oldUser = sc.sql(
s"""
|select '${stat_date}' as stat_date, count(cid_id) as imp_count_oldUser
|from data_feed_exposure je inner join device_id_old
|on je.device_id = device_id_old.device_id
|where je.cid_type = 'diary'
|and je.device_id not in (select device_id from blacklist)
|and je.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
|and je.stat_date ='${stat_date}'
""".stripMargin
)
val clk_count_all = sc.sql(
s"""
|select '${stat_date}' as stat_date, count(cid_id) as clk_count_all
|from data_feed_click
|where (cid_type = 'diary' or cid_type = 'diary_video')
|and device_id not in (select device_id from blacklist)
|and city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
|and stat_date ='${stat_date}'
""".stripMargin
)
val imp_count__all = sc.sql(
s"""
|select '${stat_date}' as stat_date, count(cid_id) as imp_count_all
|from data_feed_exposure
|where cid_type = 'diary'
|and device_id not in (select device_id from blacklist)
|and city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
|and stat_date ='${stat_date}'
""".stripMargin
)
val clk_count_oldUser_Contrast = sc.sql(
s"""
|select '${stat_date}' as stat_date, count(cid_id) as clk_count_oldUser_Contrast
|from data_feed_click jd inner join device_id_old
|on jd.device_id = device_id_old.device_id
|where (jd.cid_type = 'diary' or jd.cid_type = 'diary_video')
|and jd.device_id regexp'1$$'
|and jd.device_id not in (select device_id from blacklist)
|and jd.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
|and jd.stat_date ='${stat_date}'
""".stripMargin
)
val imp_count_oldUser_Contrast = sc.sql(
s"""
|select '${stat_date}' as stat_date, count(cid_id) as imp_count_oldUser_Contrast
|from data_feed_exposure je inner join device_id_old
|on je.device_id = device_id_old.device_id
|where je.cid_type = 'diary'
|and je.device_id regexp'1$$'
|and je.device_id not in (select device_id from blacklist)
|and je.city_id in ("huzhou","liuan","zhenjiang","taizhou","jiaxing","weihai","maanshan","changzhou","shantou","nantong","yantai","wuxi","huhehaote","taiyuan","xining","yinchuan")
|and je.stat_date ='${stat_date}'
""".stripMargin
)
val result1 = clk_count_oldUser.join(imp_count_oldUser,"stat_date")
.join(clk_count_all,"stat_date")
.join(imp_count__all,"stat_date")
.join(clk_count_oldUser_Contrast,"stat_date")
.join(imp_count_oldUser_Contrast,"stat_date")
result1.show()
GmeiConfig.writeToJDBCTable(result1, "ffm_diary_ctr", SaveMode.Append)
}
}
}
object Repeated_content_recommendation {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)
case class Params(env: String = "dev",
date: String = "2018-08-01"
) extends AbstractParams[Params] with Serializable
val defaultParams = Params()
val parser = new OptionParser[Params]("Feed_EDA") {
head("WeafareStat")
opt[String]("env")
.text(s"the databases environment you used")
.action((x, c) => c.copy(env = x))
opt[String] ("date")
.text(s"the date you used")
.action((x,c) => c.copy(date = x))
note(
"""
|For example, the following command runs this app on a tidb dataset:
|
| spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
""".stripMargin +
s"| --env ${defaultParams.env}"
)
}
def main(args: Array[String]): Unit = {
parser.parse(args, defaultParams).map { param =>
GmeiConfig.setup(param.env)
val spark_env = GmeiConfig.getSparkSession()
val sc = spark_env._2
val ti = new TiContext(sc)
ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")
val stat_date = GmeiConfig.getMinusNDate(1)
// val stat_date = param.date
val partition_date = stat_date.replace("-","")
val exp_diary = sc.sql(
s"""
|select concat_ws('|',device_id,cid_id)
|from data_feed_exposure
|where cid_type = 'diary'
|and device_id not in (select device_id from blacklist)
|and stat_date ='${stat_date}'
""".stripMargin
)
exp_diary.show()
val get_result =exp_diary.rdd.map((_, 1)).reduceByKey(_ + _)
.sortBy(_._2,false)
val more_than2=get_result.filter(_._2 >=2).map(_._2).reduce((x,y)=>x+y)
println(more_than2)
val all =get_result.map(_._2).reduce((x,y)=>x+y)
println(all)
val repeated_rate= more_than2 / all.toDouble
println(repeated_rate)
val test=List((stat_date,repeated_rate))
val df = sc.createDataFrame(test)
GmeiConfig.writeToJDBCTable(df, table = "Repeated_evaluation_indicator", SaveMode.Append)
// val temp=get_result.collect()
// for (i <- 0 until 30 ) {
// println(temp(i))
// }
}
}
}
object Repeated_content_recommendation_moreday {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)
case class Params(env: String = "dev",
date: String = "2018-08-01"
) extends AbstractParams[Params] with Serializable
val defaultParams = Params()
val parser = new OptionParser[Params]("Feed_EDA") {
head("WeafareStat")
opt[String]("env")
.text(s"the databases environment you used")
.action((x, c) => c.copy(env = x))
opt[String] ("date")
.text(s"the date you used")
.action((x,c) => c.copy(date = x))
note(
"""
|For example, the following command runs this app on a tidb dataset:
|
| spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
""".stripMargin +
s"| --env ${defaultParams.env}"
)
}
def main(args: Array[String]): Unit = {
parser.parse(args, defaultParams).map { param =>
GmeiConfig.setup(param.env)
val spark_env = GmeiConfig.getSparkSession()
val sc = spark_env._2
val ti = new TiContext(sc)
ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_click")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")
// val stat_date = GmeiConfig.getMinusNDate(1)
// val stat_date = "2019-01-16"
// val partition_date = stat_date.replace("-","")
val now= new Date()
val dateFormat = new SimpleDateFormat("yyyy-MM-dd")
val date = dateFormat.format(now.getTime - 86400000L * 15)
val yesterday=dateFormat.format(now.getTime- 86400000L)
val exp_diary = sc.sql(
s"""
|select stat_date,device_id,concat_ws(',',collect_set(distinct cid_id)) as expoure_diary
|from data_feed_exposure_precise
|where cid_type = 'diary'
|and stat_date >='${date}'
|and device_id not in (select device_id from blacklist)
|group by device_id,stat_date
""".stripMargin
).rdd.map(row=>(row(0).toString,row(1).toString,row(2).toString)).map(row=>(row._2,row._3)).groupByKey()
.filter(x => x._2.size >1)
//打印结果
// val temp=exp_diary.take(10).foreach(println)
// val count_imp=exp_diary.map(_._2).map(row=>row.flatMap(x=>x.split(",")).toArray)
// .map(x => (x,x)).map(x => (x._1.distinct.size,x._2.size)).map(x => (x._2-x._1,x._2))
//统计每个用户重复日记个数
val count_imp=exp_diary.map(_._2).map(row=>row.flatMap(x=>x.split(",")).toArray)
.map(x => (x,x)).map(x => (x._1.distinct.size,x._2.size)).map(x => (x._2-x._1,x._2)).collect()
val fenmu = count_imp.map(x => x._1).reduce((x,y) => x+y)
val fenzi = count_imp.map(x => x._2).reduce((x,y) => x+y)
val repeated_rate= fenmu / fenzi.toDouble
val result=List((yesterday,repeated_rate))
val df_result = sc.createDataFrame(result)
GmeiConfig.writeToJDBCTable(df_result, table = "Repeated_content_recommendation_moreday", SaveMode.Append)
// exp_diary.show()
// exp_diary.createOrReplaceTempView("exp_diary")
// GmeiConfig.writeToJDBCTable(df, table = "Repeated_evaluation_indicator_moreday", SaveMode.Append)
}
}
}
object GetHiveSearchData {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF)
case class Params(env: String = "dev",
date: String = "2018-08-01"
) extends AbstractParams[Params] with Serializable
case class GetHiveSearchData_temp(stat_date:String,diaryExposureVal:String,diaryClickNum:String,meigouExposureVal:String,meigouClickNum:String,searchResultExposureVal:String,searchResultClickNum:String,searchDoctorExposureVal:String,searchDoctorClickNum:String,searchHospitalExposureVal:String,searchHospitalClickNum:String)
val defaultParams = Params()
val parser = new OptionParser[Params]("Feed_EDA") {
head("WeafareStat")
opt[String]("env")
.text(s"the databases environment you used")
.action((x, c) => c.copy(env = x))
opt[String] ("date")
.text(s"the date you used")
.action((x,c) => c.copy(date = x))
note(
"""
|For example, the following command runs this app on a tidb dataset:
|
| spark-submit --class com.gmei.WeafareStat ./target/scala-2.11/feededa-assembly-0.1.jar \
""".stripMargin +
s"| --env ${defaultParams.env}"
)
}
def main(args: Array[String]): Unit = {
parser.parse(args, defaultParams).map { param =>
GmeiConfig.setup(param.env)
val spark_env = GmeiConfig.getSparkSession()
val sc = spark_env._2
val ti = new TiContext(sc)
ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure_precise")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "GetHiveSearchData_CTR")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "blacklist")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "data_feed_exposure")
ti.tidbMapTable(dbName = "jerry_prod", tableName = "merge_queue_table")
val stat_date = GmeiConfig.getMinusNDate(1)
// val stat_date = param.date
val partition_date = stat_date.replace("-","")
val strDiaryExposureAction = "/api/search/v2/diary"
val strDiaryClickAction = "search_result_more_diary_click_item" //需要确认
var (diaryExposureVal,diaryClickNum,diaryExposureMapCount,diaryExposureFilterCount) = GetSearchResultData(sc,strDiaryExposureAction,strDiaryClickAction,stat_date)
val strMeigouExposureAction = "/api/search/v2/service"
val strMeigouClickAction = "search_result_welfare_click_item"
var (meigouExposureVal,meigouClickNum,meigouExposureMapCount,meigouExposureFilterCount) = GetSearchResultData(sc,strMeigouExposureAction,strMeigouClickAction,stat_date)
val strSearchResultExposureAction = "/api/search/v2/content"
val strSearchResultClickAction = "search_result_click_diary_item" //需要确认
var (searchResultExposureVal,searchResultClickNum,searchResultExposureMapCount,searchResultExposureFilterCount) = GetSearchResultData(sc,strSearchResultExposureAction,strSearchResultClickAction,stat_date)
val strSearchDoctorExposureAction = "/api/search/v2/doctor"
val strSearchDoctorClickAction = "search_result_doctor_click_item"
var (searchDoctorExposureVal,searchDoctorClickNum,searchDoctorExposureMapCount,searchDoctorExposureFilterCount) = GetSearchResultData(sc,strSearchDoctorExposureAction,strSearchDoctorClickAction,stat_date)
val strSearchHospitalExposureAction = "/api/search/v2/hospital"
val strSearchHospitalClickAction = "search_result_hospital_click_item"
var (searchHospitalExposureVal,searchHospitalClickNum,searchHospitalExposureMapCount,searchHospitalExposureFilterCount) = GetSearchResultData(sc,strSearchHospitalExposureAction,strSearchHospitalClickAction,stat_date)
val jigou_id = sc.sql(
s"""
|SELECT cl_id
|FROM online.ml_hospital_spam_pv_day
|WHERE partition_date>='20180402' AND partition_date<'${partition_date}'
|AND pv_ratio>=0.95
|UNION ALL
|SELECT cl_id
|FROM online.ml_hospital_spam_pv_month
|WHERE partition_date>='20171101' AND partition_date<'${partition_date}'
|AND pv_ratio>=0.95
|UNION ALL
|select device_id as cl_id from blacklist
""".stripMargin
)
jigou_id.createOrReplaceTempView("jigou_id")
val diary_clickSql = sc.sql(
s"""
|select
|count(1) click_num
|from online.tl_hdfs_maidian_view ov left join jigou_id
|on ov.cl_id = jigou_id.cl_id
|where ov.partition_date='${partition_date}'
|and ov.action='on_click_diary_card'
|and ov.params['page_name']='search_result_diary'
|and jigou_id.cl_id is null
""".stripMargin
)
val diary_clickArray = diary_clickSql.collect()
val diary_click_num = diary_clickArray(0).getAs[Long]("click_num")
val content_diary_clickSql = sc.sql(
s"""
|select
|count(1) click_num
|from online.tl_hdfs_maidian_view ov left join jigou_id
|on ov.cl_id = jigou_id.cl_id
|where ov.partition_date='${partition_date}'
|and ov.action='on_click_diary_card'
|and ov.params['page_name']='search_result_more'
|and jigou_id.cl_id is null
""".stripMargin
)
val content_diary_clickArray:Array[Row] = content_diary_clickSql.collect()
val content_diary_click_num:Long = content_diary_clickArray(0).getAs[Long]("click_num")
println("searchDiaryExposureVal:" + diaryExposureVal + "\tsearchDiaryClickNum:" + diary_click_num + "\tclickRate:" + (diary_click_num.floatValue()/diaryExposureVal.floatValue()).formatted("%.2f"))
println("searchMeigouExposureVal:" + meigouExposureVal + "\tsearchMeigouClickNum:" + meigouClickNum + "\tclickRate:" + (meigouClickNum.floatValue()/meigouExposureVal.floatValue()).formatted("%.2f"))
println("searchResultExposureVal:" + searchResultExposureVal + "\tsearchResultClickNum:" + (searchResultClickNum+content_diary_click_num) + "\tclickRate:" + ((searchResultClickNum+content_diary_click_num).floatValue()/searchResultExposureVal.floatValue()).formatted("%.2f"))
println("searchDoctorExposureVal:" + searchDoctorExposureVal + "\tsearchDoctorClickNum:" + searchDoctorClickNum + "\tclickRate:" + (searchDoctorClickNum.floatValue()/searchDoctorExposureVal.floatValue()).formatted("%.2f"))
println("searchHospitalExposureVal:" + searchHospitalExposureVal + "\tsearchHospitalClickNum:" + searchHospitalClickNum + "\tclickRate:" + (searchHospitalClickNum.floatValue()/searchHospitalExposureVal.floatValue()).formatted("%.2f"))
// val add_data = sc.sql(
// s"""
// |insert into table GetHiveSearchData_CTR(stat_date,diaryExposureVal,diaryClickNum,meigouExposureVal,meigouClickNum,searchResultExposureVal,searchResultClickNum,searchDoctorExposureVal,searchDoctorClickNum,searchHospitalExposureVal,searchHospitalClickNum)
// |values ('${stat_date}','${diaryExposureVal}','${(diary_click_num+diaryClickNum)}','${meigouExposureVal}','${meigouClickNum}','${searchResultExposureVal}','${(searchResultClickNum+content_diary_click_num)}','${searchDoctorExposureVal}','${searchDoctorClickNum}','${searchHospitalExposureVal}','${searchHospitalClickNum}')
// """.stripMargin
// )
import sc.implicits._
val result=List((stat_date,diaryExposureVal,(diary_click_num+diaryClickNum),meigouExposureVal,meigouClickNum,searchResultExposureVal,(searchResultClickNum+content_diary_click_num),searchDoctorExposureVal,searchDoctorClickNum,searchHospitalExposureVal,searchHospitalClickNum))
// val df_result = sc.createDataFrame(result).map(x=>GetHiveSearchData_temp(x(0).toString,x(1).toString,x(2).toString,x(3).toString,x(4).toString,x(5).toString,x(6).toString,x(7).toString,x(8).toString,x(9).toString,x(10).toString)).toDF()
val df_result = sc.sparkContext.parallelize(result).map(x=>(x._1,x._2,x._3,x._4,x._5,x._6,x._7,x._8,x._9,x._10,x._11)).toDF("stat_date","diaryExposureVal","diaryClickNum","meigouExposureVal","meigouClickNum","searchResultExposureVal","searchResultClickNum","searchDoctorExposureVal",
"searchDoctorClickNum","searchHospitalExposureVal","searchHospitalClickNum")
//
GmeiConfig.writeToJDBCTable(df_result, table = "GetHiveSearchData_CTR", SaveMode.Append)
}
def GetSearchResultData(spark: SparkSession, strExposureAction:String, strClickAction:String,stat_date:String) = {
val partition_date = stat_date.replace("-","")
val exposureAccum = spark.sparkContext.longAccumulator("search exposure data")
val jigou_id = spark.sql(
s"""
|SELECT cl_id
|FROM online.ml_hospital_spam_pv_day
|WHERE partition_date>='20180402' AND partition_date<'${partition_date}'
|AND pv_ratio>=0.95
|UNION ALL
|SELECT cl_id
|FROM online.ml_hospital_spam_pv_month
|WHERE partition_date>='20171101' AND partition_date<'${partition_date}'
|AND pv_ratio>=0.95
|UNION ALL
|select device_id as cl_id from blacklist
""".stripMargin
)
jigou_id.createOrReplaceTempView("jigou_id")
val exposureSql = spark.sql(
s"""
|select action,user_id,city_id,app
|from online.tl_hdfs_backend_view ov left join jigou_id
|on ov.cl_id = jigou_id.cl_id
|where ov.action='$strExposureAction'
|and ov.partition_date='${partition_date}'
|and jigou_id.cl_id is null
""".stripMargin
)
val exposureMapResult = exposureSql.rdd.map(row => {
//val jsonObj = JSON.parseFull(row.getAs[Map[String,Any]]("app").toString())
val rowAppFieldMap:Map[String,Any] = row.getAs[Map[String,Any]]("app")
if (rowAppFieldMap.nonEmpty)
{
// jsonMap:Map[String,Any] = jsonObj.get.asInstanceOf[Map[String,Any]]
if (rowAppFieldMap.contains("exposure_data")){
val exposure_data_lists:List[Any] = JSON.parseFull(rowAppFieldMap("exposure_data").toString).get.asInstanceOf[List[Any]]
if (exposure_data_lists.length > 0){
exposure_data_lists.foreach(exposure_item=>{
if (exposure_item!=None && exposure_item.toString.nonEmpty){
val exposureItemMap:Map[String,Any] = exposure_item.asInstanceOf[Map[String,Any]]
if (exposureItemMap.contains("list_ids")){
//val exposure_list_ids:List[Any] = exposureItemMap.get("list_ids").get.asInstanceOf[List[Any]]
val exposure_list_ids:List[Any] = exposureItemMap("list_ids").asInstanceOf[List[Any]]
exposureAccum.add(exposure_list_ids.length)
}
}else{
None
}
})
exposure_data_lists
}else{
None
}
}
}else{
None
}
})
//must add cache
exposureMapResult.cache()
val exposureFilterResult = exposureMapResult.filter(_.!=(None))
//val exposureArray:Array[Any] = exposureFilterResult.collect()
//exposureArray.foreach(item => println(item.toString))
val exposureMapCount:Long = exposureMapResult.count()
val exposureFilterCount:Long = exposureFilterResult.count()
val clickSql = spark.sql(
s"""
|select
|count(1) click_num
|from online.tl_hdfs_maidian_view ov left join jigou_id
|on ov.cl_id = jigou_id.cl_id
|where ov.partition_date='${partition_date}'
|and ov.action='$strClickAction'
|and jigou_id.cl_id is null
""".stripMargin
)
val clickArray:Array[Row] = clickSql.collect()
val click_num:Long = clickArray(0).getAs[Long]("click_num")
(exposureAccum.value,click_num,exposureMapCount,exposureFilterCount)
}
// GmeiConfig.writeToJDBCTable(df_result, table = "Repeated_content_recommendation_moreday", SaveMode.Append)
// exp_diary.show()
// exp_diary.createOrReplaceTempView("exp_diary")
// GmeiConfig.writeToJDBCTable(df, table = "Repeated_evaluation_indicator_moreday", SaveMode.Append)
}
}