Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
08d18203
Commit
08d18203
authored
Jun 20, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change test file
parent
35ee7eb2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
71 additions
and
66 deletions
+71
-66
feature_test.py
tensnsorflow/feature_test.py
+69
-66
multi_hot.py
tensnsorflow/multi_hot.py
+2
-0
No files found.
tensnsorflow/feature_test.py
View file @
08d18203
...
...
@@ -173,72 +173,72 @@ def feature_engineer():
16
+
apps_number
+
level2_number
+
level3_number
+
len
(
unique_values
)))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
#
sql = "select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer," \
#
"u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id," \
#
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4," \
#
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7," \
#
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time " \
#
"from jerry_test.esmm_train_data_dwell e left join jerry_test.user_feature u on e.device_id = u.device_id " \
#
"left join jerry_test.cid_type_top c on e.device_id = c.device_id " \
#
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid " \
#
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id " \
#
"left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id " \
#
"left join jerry_test.knowledge k on feat.level2 = k.level2_id " \
#
"left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id " \
#
"left join jerry_test.question_tag question on e.device_id = question.device_id " \
#
"left join jerry_test.search_tag search on e.device_id = search.device_id " \
#
"left join jerry_test.budan_tag budan on e.device_id = budan.device_id " \
#
"left join jerry_test.order_tag ot on e.device_id = ot.device_id " \
#
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id " \
#
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id " \
#
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id " \
#
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id " \
#
"where e.stat_date >= '{}'".format(start)
#
#
df = spark.sql(sql)
#
#
df = df.drop_duplicates(["ucity_id", "level2_ids", "ccity_name", "device_type", "manufacturer",
#
"channel", "top", "time", "stat_date", "app_list", "hospital_id", "level3_ids",
#
"tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7"])
#
#
df = df.na.fill(dict(zip(features, features)))
#
#
rdd = df.select("stat_date", "y", "z", "app_list", "level2_ids", "level3_ids",
#
"tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7",
#
"ucity_id", "ccity_name", "device_type", "manufacturer", "channel", "top", "time",
#
"hospital_id", "treatment_method", "price_min", "price_max", "treatment_time",
#
"maintain_time", "recover_time").rdd.repartition(200).map(
#
lambda x: (x[0], float(x[1]), float(x[2]), app_list_func(x[3], app_list_map), app_list_func(x[4], leve2_map),
#
app_list_func(x[5], leve3_map), app_list_func(x[6], leve2_map), app_list_func(x[7], leve2_map),
#
app_list_func(x[8], leve2_map), app_list_func(x[9], leve2_map), app_list_func(x[10], leve2_map),
#
app_list_func(x[11], leve2_map), app_list_func(x[12], leve2_map),
#
[value_map[x[0]], value_map[x[13]], value_map[x[14]], value_map[x[15]], value_map[x[16]],
#
value_map[x[17]], value_map[x[18]], value_map[x[19]], value_map[x[20]], value_map[x[21]],
#
value_map[x[22]], value_map[x[23]], value_map[x[24]], value_map[x[25]], value_map[x[26]]]))\
#
.zipWithIndex().map(lambda x:(x[0][0],x[0][1],x[0][2],x[0][3],x[0][4],x[0][5],x[0][6],x[0][7],x[0][8],
#
x[0][9],x[0][10],x[0][11],x[0][12],x[0][13],
#
x[1]))
#
#
#
rdd.persist(storageLevel= StorageLevel.MEMORY_ONLY_SER)
#
#
#
TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
#
#
train = rdd.map(
#
lambda x: (x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9],
#
x[10], x[11], x[12], x[13],x[14]))
#
f = time.time()
#
spark.createDataFrame(train).toDF("y", "z", "app_list", "level2_list", "level3_list",
#
"tag1_list", "tag2_list", "tag3_list", "tag4_list",
#
"tag5_list", "tag6_list", "tag7_list", "ids","number") \
#
.repartition(1).write.format("tfrecords").save(path=path + "test_tr/", mode="overwrite")
#
h = time.time()
#
print("train tfrecord done")
#
print((h - f) / 60)
#
#
print("训练集样本总量:")
#
print(rdd.count())
#
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer,"
\
"u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"from jerry_test.esmm_train_data_dwell e left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.device_app_list dl on e.device_id = dl.device_id "
\
"left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id "
\
"left join jerry_test.knowledge k on feat.level2 = k.level2_id "
\
"left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id "
\
"left join jerry_test.question_tag question on e.device_id = question.device_id "
\
"left join jerry_test.search_tag search on e.device_id = search.device_id "
\
"left join jerry_test.budan_tag budan on e.device_id = budan.device_id "
\
"left join jerry_test.order_tag ot on e.device_id = ot.device_id "
\
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
"where e.stat_date >= '{}'"
.
format
(
start
)
df
=
spark
.
sql
(
sql
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"level2_ids"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
])
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
rdd
=
df
.
select
(
"stat_date"
,
"y"
,
"z"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
)
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve2_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
10
],
leve2_map
),
app_list_func
(
x
[
11
],
leve2_map
),
app_list_func
(
x
[
12
],
leve2_map
),
[
value_map
[
x
[
0
]],
value_map
[
x
[
13
]],
value_map
[
x
[
14
]],
value_map
[
x
[
15
]],
value_map
[
x
[
16
]],
value_map
[
x
[
17
]],
value_map
[
x
[
18
]],
value_map
[
x
[
19
]],
value_map
[
x
[
20
]],
value_map
[
x
[
21
]],
value_map
[
x
[
22
]],
value_map
[
x
[
23
]],
value_map
[
x
[
24
]],
value_map
[
x
[
25
]],
value_map
[
x
[
26
]]]))
\
.
zipWithIndex
()
.
map
(
lambda
x
:(
x
[
0
][
0
],
x
[
0
][
1
],
x
[
0
][
2
],
x
[
0
][
3
],
x
[
0
][
4
],
x
[
0
][
5
],
x
[
0
][
6
],
x
[
0
][
7
],
x
[
0
][
8
],
x
[
0
][
9
],
x
[
0
][
10
],
x
[
0
][
11
],
x
[
0
][
12
],
x
[
0
][
13
],
x
[
1
]))
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_ONLY_SER
)
# TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集
train
=
rdd
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
]))
f
=
time
.
time
()
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"number"
)
\
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"test_tr/"
,
mode
=
"overwrite"
)
h
=
time
.
time
()
print
(
"train tfrecord done"
)
print
((
h
-
f
)
/
60
)
print
(
"训练集样本总量:"
)
print
(
rdd
.
count
())
# get_pre_number()
#
# test = rdd.filter(lambda x: x[0] == validate_date).map(
...
...
@@ -285,6 +285,9 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
df
=
spark
.
sql
(
sql
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"device_id"
,
"cid_id"
])
print
(
"pre"
)
print
(
df
.
count
())
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
f
=
time
.
time
()
rdd
=
df
.
select
(
"label"
,
"y"
,
"z"
,
"ucity_id"
,
"device_id"
,
"cid_id"
,
"app_list"
,
"level2_ids"
,
"level3_ids"
,
...
...
tensnsorflow/multi_hot.py
View file @
08d18203
...
...
@@ -300,6 +300,8 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
df
=
spark
.
sql
(
sql
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"device_id"
,
"cid_id"
])
print
(
"pre"
)
print
(
df
.
count
())
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
f
=
time
.
time
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment