Commit 13d68701 authored by 张彦钊's avatar 张彦钊

修改测试文件

parent 037a733c
# -*- coding: UTF-8 -*-
import redis
import datetime
import json
if __name__ == "__main__":
device_id = "D17A3770-1CC7-4AFB-A9EA-6E667EE051FF"
search_qa_recommend_key = "TS:search_recommend_answer_queue:device_id:" + str(device_id)
r = redis.StrictRedis.from_url("redis://redis.paas-test.env:6379/1")
cids = list(range(529405,529408))
cids = [str(i) for i in cids]
value = json.dumps(cids)
r.hset(search_qa_recommend_key,'answer_queue',value)
print(1)
# coding=utf-8
import numpy as np
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
import pandas as pd
data = pd.read_csv("/Users/mac/Downloads/location.csv")
data.drop(["device_id", "partition_date"], axis=1, inplace=True)
data = data[["lat", "lng"]]
data = data.as_matrix().astype("float32", copy=False)#convert to array
#数据预处理,特征标准化,每一维是零均值和单位方差
stscaler = StandardScaler().fit(data)
data = stscaler.transform(data)
#画出x和y的散点图
plt.scatter(data[:, 0], data[:, 1])
plt.xlabel("lat")
plt.ylabel("lng")
plt.title("beijng_users")
# plt.savefig("results/wholesale.png", format="PNG")
dbsc = DBSCAN(eps=0.5, min_samples=15).fit(data)
labels = dbsc.labels_ #聚类得到每个点的聚类标签 -1表示噪点
#print(labels)
core_samples = np.zeros_like(labels, dtype=bool) #构造和labels一致的零矩阵,值是false
core_samples[dbsc.core_sample_indices_] = True
#print(core_samples)
unique_labels = np.unique(labels)
colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) #linespace返回在【0,1】之间均匀分布数字是len个,Sepectral生成len个颜色
#print(zip(unique_labels,colors))
for (label, color) in zip(unique_labels, colors):
class_member_mask = (labels == label)
print(class_member_mask&core_samples)
xy = data[class_member_mask & core_samples]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=color, markersize=10)
xy2 = data[class_member_mask & ~core_samples]
plt.plot(xy2[:, 0], xy2[:, 1], 'o', markerfacecolor=color, markersize=5)
plt.title("DBSCAN on beijing_users")
plt.xlabel("lat (scaled)")
plt.ylabel("lng (scaled)")
plt.savefig("results/(0.9,15)dbscan_wholesale.png", format="PNG")
......@@ -76,6 +76,15 @@ def get_order():
r += 10000
print("insert done")
def get_meigou_tag():
sql = "select service_id,tag_id from api_servicetag"
df = pd.DataFrame(list(get_mysql_data(host, port, user, passwd, db, sql)))
df = df.rename(columns={0: "service_id", 1: "tag_id"})
pd.io.sql.to_sql(df, "meigou_tag", yconnect, schema='jerry_test', if_exists='append', index=False)
print("insert done")
def meigou_to_csv():
sql = "select device_id,service_id,created_time from meigou_order"
df = pd.DataFrame(list(get_mysql_data(host, port, user, passwd, db, sql)))
......@@ -111,21 +120,22 @@ def location_to_csv():
if __name__ == "__main__":
# host = "172.16.30.141"
# port = 3306
# user = "work"
# passwd = "BJQaT9VzDcuPBqkd"
# db = "zhengxing"
# yconnect = create_engine('mysql+pymysql://root:3SYz54LS9#^9sBvC@172.16.40.170:4000/jerry_test?charset=utf8')
# print("end")
host = "172.16.40.170"
port = 4000
user = "root"
passwd = "3SYz54LS9#^9sBvC"
db = "jerry_test"
location_to_csv()
host = "172.16.30.141"
port = 3306
user = "work"
passwd = "BJQaT9VzDcuPBqkd"
db = "zhengxing"
yconnect = create_engine('mysql+pymysql://root:3SYz54LS9#^9sBvC@172.16.40.170:4000/jerry_test?charset=utf8')
get_meigou_tag()
print("end")
# host = "172.16.40.170"
# port = 4000
# user = "root"
# passwd = "3SYz54LS9#^9sBvC"
# db = "jerry_test"
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment