Commit 13d76fff authored by Your Name's avatar Your Name

test

parent 743396d9
......@@ -142,7 +142,7 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
#print(batch_features,batch_labels)
return batch_features, batch_labels
def main(_):
def main(te_file):
dt_dir = (date.today() + timedelta(-1)).strftime('%Y%m%d')
model_dir = "hdfs://172.16.32.4:8020/strategy/esmm/model_ckpt/DeepCvrMTL/" + dt_dir
te_files = ["hdfs://172.16.32.4:8020/strategy/esmm/nearby/part-r-00000"]
......@@ -160,7 +160,7 @@ def main(_):
log_step_count_steps=100, save_summary_steps=100)
Estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir, params=model_params, config=config)
preds = Estimator.predict(input_fn=lambda: input_fn(te_files, num_epochs=1, batch_size=10000), predict_keys=["pctcvr","pctr","pcvr"])
preds = Estimator.predict(input_fn=lambda: input_fn(te_file, num_epochs=1, batch_size=10000), predict_keys=["pctcvr","pctr","pcvr"])
with open("/home/gmuser/esmm/nearby/pred.txt", "w") as fo:
for prob in preds:
......@@ -202,8 +202,8 @@ if __name__ == "__main__":
# rdd_te_files = spark.sparkContext.parallelize(te_files)
# indices = rdd_te_files.repartition(2).map(lambda x: main(x))
# print(indices.collect())
tf.app.run()
# tf.app.run()
main(te_files)
b = time.time()
print("耗时(分钟):")
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment