Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
1d6d767c
Commit
1d6d767c
authored
Jun 25, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
按照雅喆的要求,修改特征工程文件,增加用户、城市、日记三个字段
parent
8d1e7234
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
14 additions
and
20 deletions
+14
-20
feature_engineering.py
eda/esmm/Model_pipline/feature_engineering.py
+14
-20
No files found.
eda/esmm/Model_pipline/feature_engineering.py
View file @
1d6d767c
...
...
@@ -192,7 +192,8 @@ def feature_engineer():
"u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time,"
\
"e.device_id,e.cid_id "
\
"from jerry_test.esmm_train_data_dwell e left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
...
...
@@ -223,7 +224,7 @@ def feature_engineer():
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
)
\
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
,
"cid_id"
,
"device_id"
)
\
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
...
...
@@ -234,7 +235,7 @@ def feature_engineer():
value_map
.
get
(
x
[
20
],
9
),
value_map
.
get
(
x
[
21
],
10
),
value_map
.
get
(
x
[
22
],
11
),
value_map
.
get
(
x
[
23
],
12
),
value_map
.
get
(
x
[
24
],
13
),
value_map
.
get
(
x
[
25
],
14
),
value_map
.
get
(
x
[
26
],
15
)],
app_list_func
(
x
[
27
],
leve2_map
),
app_list_func
(
x
[
28
],
leve3_map
)
app_list_func
(
x
[
27
],
leve2_map
),
app_list_func
(
x
[
28
],
leve3_map
)
,
x
[
13
],
x
[
29
],
x
[
30
]
))
...
...
@@ -244,11 +245,12 @@ def feature_engineer():
train
=
rdd
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
]))
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
]
,
x
[
16
],
x
[
17
],
x
[
18
]
))
f
=
time
.
time
()
spark
.
createDataFrame
(
train
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
)
\
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"cid_id"
,
"uid"
)
\
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"tr/"
,
mode
=
"overwrite"
)
h
=
time
.
time
()
print
(
"train tfrecord done"
)
...
...
@@ -261,11 +263,12 @@ def feature_engineer():
test
=
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
validate_date
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
3
],
x
[
4
],
x
[
5
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
]))
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
]
,
x
[
16
],
x
[
17
],
x
[
18
]
))
spark
.
createDataFrame
(
test
)
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
)
\
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"cid_id"
,
"uid"
)
\
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"va/"
,
mode
=
"overwrite"
)
print
(
"va tfrecord done"
)
...
...
@@ -335,30 +338,21 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
rdd
.
persist
(
storageLevel
=
StorageLevel
.
MEMORY_ONLY_SER
)
print
(
rdd
.
count
())
native_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:(
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"native csv"
)
native_pre
.
toPandas
()
.
to_csv
(
local_path
+
"native.csv"
,
header
=
True
)
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
0
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
])))
\
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
]
,
x
[
3
],
x
[
4
],
x
[
5
]
)))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
)
\
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"uid"
,
"cid_id"
)
\
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"native/"
,
mode
=
"overwrite"
)
print
(
"native tfrecord done"
)
h
=
time
.
time
()
print
((
h
-
f
)
/
60
)
nearby_pre
=
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
1
)
.
map
(
lambda
x
:
(
x
[
3
],
x
[
4
],
x
[
5
])))
\
.
toDF
(
"city"
,
"uid"
,
"cid_id"
)
print
(
"nearby csv"
)
nearby_pre
.
toPandas
()
.
to_csv
(
local_path
+
"nearby.csv"
,
header
=
True
)
spark
.
createDataFrame
(
rdd
.
filter
(
lambda
x
:
x
[
0
]
==
1
)
.
map
(
lambda
x
:
(
x
[
1
],
x
[
2
],
x
[
6
],
x
[
7
],
x
[
8
],
x
[
9
],
x
[
10
],
x
[
11
],
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
])))
\
x
[
12
],
x
[
13
],
x
[
14
],
x
[
15
],
x
[
16
],
x
[
17
],
x
[
18
]
,
x
[
3
],
x
[
4
],
x
[
5
]
)))
\
.
toDF
(
"y"
,
"z"
,
"app_list"
,
"level2_list"
,
"level3_list"
,
"tag1_list"
,
"tag2_list"
,
"tag3_list"
,
"tag4_list"
,
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
)
\
"tag5_list"
,
"tag6_list"
,
"tag7_list"
,
"ids"
,
"search_tag2_list"
,
"search_tag3_list"
,
"city"
,
"uid"
,
"cid_id"
)
\
.
repartition
(
1
)
.
write
.
format
(
"tfrecords"
)
.
save
(
path
=
path
+
"nearby/"
,
mode
=
"overwrite"
)
print
(
"nearby tfrecord done"
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment