Commit 2b18672a authored by 张彦钊's avatar 张彦钊

change test file

parent 494f5ad5
......@@ -276,7 +276,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
"left join jerry_test.order_tag ot on e.device_id = ot.device_id " \
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id " \
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id " \
"left join jerry_test.knowledge k on feat.level2 = k.level2_id"
"left join jerry_test.knowledge k on feat.level2 = k.level2_id limit 6000"
features = ["ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "hospital_id",
......@@ -312,18 +312,18 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
rdd.persist(storageLevel= StorageLevel.MEMORY_ONLY_SER)
native_pre = spark.createDataFrame(rdd.filter(lambda x:x[0] == 0).map(lambda x:(x[3],x[4],x[5])))\
.toDF("city","uid","cid_id")
print("native csv")
native_pre.toPandas().to_csv(local_path + "native.csv", header=True)
spark.createDataFrame(rdd.filter(lambda x: x[0] == 0)
.map(lambda x: (x[1],x[2],x[6],x[7],x[8],x[9],x[10],x[11],x[12],x[13],x[14],x[15],x[16],x[17]))) \
.toDF("y","z","app_list", "level2_list", "level3_list","tag1_list", "tag2_list", "tag3_list", "tag4_list",
"tag5_list", "tag6_list", "tag7_list", "ids","number").repartition(1).write.format("tfrecords") \
.save(path=path+"native/", mode="overwrite")
print("native tfrecord done")
h = time.time()
print((h-f)/60)
# native_pre = spark.createDataFrame(rdd.filter(lambda x:x[0] == 0).map(lambda x:(x[3],x[4],x[5])))\
# .toDF("city","uid","cid_id")
# print("native csv")
# native_pre.toPandas().to_csv(local_path + "native.csv", header=True)
# spark.createDataFrame(rdd.filter(lambda x: x[0] == 0)
# .map(lambda x: (x[1],x[2],x[6],x[7],x[8],x[9],x[10],x[11],x[12],x[13],x[14],x[15],x[16],x[17]))) \
# .toDF("y","z","app_list", "level2_list", "level3_list","tag1_list", "tag2_list", "tag3_list", "tag4_list",
# "tag5_list", "tag6_list", "tag7_list", "ids","number").repartition(1).write.format("tfrecords") \
# .save(path=path+"native/", mode="overwrite")
# print("native tfrecord done")
# h = time.time()
# print((h-f)/60)
nearby_pre = spark.createDataFrame(rdd.filter(lambda x: x[0] == 1).map(lambda x: (x[3], x[4], x[5]))) \
.toDF("city", "uid", "cid_id")
......@@ -334,7 +334,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
.map(
lambda x: (x[1], x[2], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13], x[14], x[15], x[16],x[17]))) \
.toDF("y", "z", "app_list", "level2_list", "level3_list", "tag1_list", "tag2_list", "tag3_list", "tag4_list",
"tag5_list", "tag6_list", "tag7_list", "ids","number").repartition(1).write.format("tfrecords") \
"tag5_list", "tag6_list", "tag7_list", "ids","number").repartition(100).write.format("tfrecords") \
.save(path=path + "nearby/", mode="overwrite")
print("nearby tfrecord done")
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment