Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
2ebc2f0d
Commit
2ebc2f0d
authored
Jul 05, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'zhao' into 'master'
删除视频特征 See merge request
!23
parents
9bce9ba0
9fbcf1a0
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
15 additions
and
18 deletions
+15
-18
feature_engineering.py
eda/esmm/Model_pipline/feature_engineering.py
+12
-15
submit.sh
eda/esmm/Model_pipline/submit.sh
+3
-3
No files found.
eda/esmm/Model_pipline/feature_engineering.py
View file @
2ebc2f0d
...
@@ -159,7 +159,7 @@ def feature_engineer():
...
@@ -159,7 +159,7 @@ def feature_engineer():
sql
=
"select distinct recover_time from knowledge"
sql
=
"select distinct recover_time from knowledge"
unique_values
.
extend
(
get_unique
(
db
,
sql
))
unique_values
.
extend
(
get_unique
(
db
,
sql
))
unique_values
.
append
(
"video"
)
#
unique_values.append("video")
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data_dwell"
sql
=
"select max(stat_date) from esmm_train_data_dwell"
...
@@ -179,7 +179,7 @@ def feature_engineer():
...
@@ -179,7 +179,7 @@ def feature_engineer():
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"app_list"
,
"level3_ids"
,
"level2_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"app_list"
,
"level3_ids"
,
"level2_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"search_tag2"
,
"search_tag3"
,
"is_video"
]
"search_tag2"
,
"search_tag3"
]
unique_values
.
extend
(
features
)
unique_values
.
extend
(
features
)
print
(
"unique_values length"
)
print
(
"unique_values length"
)
print
(
len
(
unique_values
))
print
(
len
(
unique_values
))
...
@@ -195,7 +195,7 @@ def feature_engineer():
...
@@ -195,7 +195,7 @@ def feature_engineer():
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time,"
\
"e.device_id,e.cid_id
,video.is_video
"
\
"e.device_id,e.cid_id "
\
"from jerry_test.esmm_train_data_dwell e left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"from jerry_test.esmm_train_data_dwell e left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_type_top c on e.device_id = c.device_id "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
"left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid "
\
...
@@ -212,14 +212,13 @@ def feature_engineer():
...
@@ -212,14 +212,13 @@ def feature_engineer():
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
"left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id "
\
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
"left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id "
\
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date "
\
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date "
\
"left join jerry_prod.diary_video video on e.cid_id = video.cid and e.stat_date = video.stat_date "
\
"where e.stat_date >= '{}'"
.
format
(
start
)
"where e.stat_date >= '{}'"
.
format
(
start
)
df
=
spark
.
sql
(
sql
)
df
=
spark
.
sql
(
sql
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"level2_ids"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"level2_ids"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
,
"app_list"
,
"hospital_id"
,
"level3_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"is_video"
])
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
])
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
df
=
df
.
na
.
fill
(
dict
(
zip
(
features
,
features
)))
...
@@ -227,7 +226,7 @@ def feature_engineer():
...
@@ -227,7 +226,7 @@ def feature_engineer():
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
,
"
is_video"
,
"
cid_id"
,
"device_id"
)
\
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
,
"cid_id"
,
"device_id"
)
\
.
rdd
.
repartition
(
200
)
.
map
(
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
app_list_func
(
x
[
3
],
app_list_map
),
app_list_func
(
x
[
4
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
5
],
leve3_map
),
app_list_func
(
x
[
6
],
leve2_map
),
app_list_func
(
x
[
7
],
leve2_map
),
...
@@ -237,8 +236,8 @@ def feature_engineer():
...
@@ -237,8 +236,8 @@ def feature_engineer():
value_map
.
get
(
x
[
16
],
5
),
value_map
.
get
(
x
[
17
],
6
),
value_map
.
get
(
x
[
18
],
7
),
value_map
.
get
(
x
[
19
],
8
),
value_map
.
get
(
x
[
16
],
5
),
value_map
.
get
(
x
[
17
],
6
),
value_map
.
get
(
x
[
18
],
7
),
value_map
.
get
(
x
[
19
],
8
),
value_map
.
get
(
x
[
20
],
9
),
value_map
.
get
(
x
[
21
],
10
),
value_map
.
get
(
x
[
20
],
9
),
value_map
.
get
(
x
[
21
],
10
),
value_map
.
get
(
x
[
22
],
11
),
value_map
.
get
(
x
[
23
],
12
),
value_map
.
get
(
x
[
24
],
13
),
value_map
.
get
(
x
[
22
],
11
),
value_map
.
get
(
x
[
23
],
12
),
value_map
.
get
(
x
[
24
],
13
),
value_map
.
get
(
x
[
25
],
14
),
value_map
.
get
(
x
[
26
],
15
)
,
value_map
.
get
(
x
[
29
],
16
)
],
value_map
.
get
(
x
[
25
],
14
),
value_map
.
get
(
x
[
26
],
15
)],
app_list_func
(
x
[
27
],
leve2_map
),
app_list_func
(
x
[
28
],
leve3_map
),
x
[
13
],
x
[
30
],
x
[
31
]
app_list_func
(
x
[
27
],
leve2_map
),
app_list_func
(
x
[
28
],
leve3_map
),
x
[
13
],
x
[
29
],
x
[
30
]
))
))
...
@@ -286,7 +285,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
...
@@ -286,7 +285,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time,"
\
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time,"
\
"dl.app_list,e.hospital_id,feat.level3_ids,"
\
"dl.app_list,e.hospital_id,feat.level3_ids,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4,"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,
video.is_video,
"
\
"ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7,doris.search_tag2,doris.search_tag3,"
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time "
\
"from jerry_test.esmm_pre_data e "
\
"from jerry_test.esmm_pre_data e "
\
"left join jerry_test.user_feature u on e.device_id = u.device_id "
\
"left join jerry_test.user_feature u on e.device_id = u.device_id "
\
...
@@ -302,14 +301,13 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
...
@@ -302,14 +301,13 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id "
\
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join jerry_test.cart_tag cart on e.device_id = cart.device_id "
\
"left join jerry_test.knowledge k on feat.level2 = k.level2_id "
\
"left join jerry_test.knowledge k on feat.level2 = k.level2_id "
\
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date "
\
"left join jerry_test.search_doris doris on e.device_id = doris.device_id and e.stat_date = doris.get_date"
"left join jerry_prod.diary_video video on e.cid_id = video.cid and e.stat_date = video.stat_date"
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"app_list"
,
"level3_ids"
,
"level2_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"app_list"
,
"level3_ids"
,
"level2_ids"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"search_tag2"
,
"search_tag3"
,
"is_video"
]
"search_tag2"
,
"search_tag3"
]
df
=
spark
.
sql
(
sql
)
df
=
spark
.
sql
(
sql
)
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"device_id"
,
"cid_id"
])
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"device_id"
,
"cid_id"
])
...
@@ -320,7 +318,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
...
@@ -320,7 +318,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"tag1"
,
"tag2"
,
"tag3"
,
"tag4"
,
"tag5"
,
"tag6"
,
"tag7"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"hospital_id"
,
"treatment_method"
,
"price_min"
,
"price_max"
,
"treatment_time"
,
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
,
"is_video"
)
\
"maintain_time"
,
"recover_time"
,
"search_tag2"
,
"search_tag3"
)
\
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
x
[
3
],
x
[
4
],
x
[
5
],
.
rdd
.
repartition
(
200
)
.
map
(
lambda
x
:
(
x
[
0
],
float
(
x
[
1
]),
float
(
x
[
2
]),
x
[
3
],
x
[
4
],
x
[
5
],
app_list_func
(
x
[
6
],
app_list_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
6
],
app_list_map
),
app_list_func
(
x
[
7
],
leve2_map
),
app_list_func
(
x
[
8
],
leve3_map
),
app_list_func
(
x
[
9
],
leve2_map
),
app_list_func
(
x
[
8
],
leve3_map
),
app_list_func
(
x
[
9
],
leve2_map
),
...
@@ -334,7 +332,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
...
@@ -334,7 +332,7 @@ def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
value_map
.
get
(
x
[
23
],
9
),
value_map
.
get
(
x
[
24
],
10
),
value_map
.
get
(
x
[
23
],
9
),
value_map
.
get
(
x
[
24
],
10
),
value_map
.
get
(
x
[
25
],
11
),
value_map
.
get
(
x
[
26
],
12
),
value_map
.
get
(
x
[
25
],
11
),
value_map
.
get
(
x
[
26
],
12
),
value_map
.
get
(
x
[
27
],
13
),
value_map
.
get
(
x
[
28
],
14
),
value_map
.
get
(
x
[
27
],
13
),
value_map
.
get
(
x
[
28
],
14
),
value_map
.
get
(
x
[
29
],
15
)
,
value_map
.
get
(
x
[
32
],
16
)
],
value_map
.
get
(
x
[
29
],
15
)],
app_list_func
(
x
[
30
],
leve2_map
),
app_list_func
(
x
[
31
],
leve3_map
)))
app_list_func
(
x
[
30
],
leve2_map
),
app_list_func
(
x
[
31
],
leve3_map
)))
...
@@ -374,7 +372,6 @@ if __name__ == '__main__':
...
@@ -374,7 +372,6 @@ if __name__ == '__main__':
spark
=
SparkSession
.
builder
.
config
(
conf
=
sparkConf
)
.
enableHiveSupport
()
.
getOrCreate
()
spark
=
SparkSession
.
builder
.
config
(
conf
=
sparkConf
)
.
enableHiveSupport
()
.
getOrCreate
()
ti
=
pti
.
TiContext
(
spark
)
ti
=
pti
.
TiContext
(
spark
)
ti
.
tidbMapDatabase
(
"jerry_test"
)
ti
.
tidbMapDatabase
(
"jerry_test"
)
ti
.
tidbMapDatabase
(
"jerry_prod"
)
ti
.
tidbMapDatabase
(
"eagle"
)
ti
.
tidbMapDatabase
(
"eagle"
)
spark
.
sparkContext
.
setLogLevel
(
"WARN"
)
spark
.
sparkContext
.
setLogLevel
(
"WARN"
)
path
=
"hdfs:///strategy/esmm/"
path
=
"hdfs:///strategy/esmm/"
...
...
eda/esmm/Model_pipline/submit.sh
View file @
2ebc2f0d
...
@@ -19,11 +19,11 @@ echo "rm model file"
...
@@ -19,11 +19,11 @@ echo "rm model file"
b
=
`
date
+%Y%m%d
`
b
=
`
date
+%Y%m%d
`
echo
"train..."
echo
"train..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
10000
--field_size
=
1
6
--feature_size
=
600000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
HDFS_PATH
}
/model_ckpt/DeepCvrMTL/
--local_dir
=
${
LOCAL_PATH
}
--hdfs_dir
=
${
HDFS_PATH
}
/native
--task_type
=
train
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
10000
--field_size
=
1
5
--feature_size
=
600000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
HDFS_PATH
}
/model_ckpt/DeepCvrMTL/
--local_dir
=
${
LOCAL_PATH
}
--hdfs_dir
=
${
HDFS_PATH
}
/native
--task_type
=
train
echo
"infer native..."
echo
"infer native..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
10000
--field_size
=
1
6
--feature_size
=
600000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
HDFS_PATH
}
/model_ckpt/DeepCvrMTL/
--local_dir
=
${
LOCAL_PATH
}
/native
--hdfs_dir
=
${
HDFS_PATH
}
/native
--task_type
=
infer
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
10000
--field_size
=
1
5
--feature_size
=
600000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
HDFS_PATH
}
/model_ckpt/DeepCvrMTL/
--local_dir
=
${
LOCAL_PATH
}
/native
--hdfs_dir
=
${
HDFS_PATH
}
/native
--task_type
=
infer
echo
"infer nearby..."
echo
"infer nearby..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
10000
--field_size
=
1
6
--feature_size
=
600000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
HDFS_PATH
}
/model_ckpt/DeepCvrMTL/
--local_dir
=
${
LOCAL_PATH
}
/nearby
--hdfs_dir
=
${
HDFS_PATH
}
/nearby
--task_type
=
infer
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.5
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
10000
--field_size
=
1
5
--feature_size
=
600000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
HDFS_PATH
}
/model_ckpt/DeepCvrMTL/
--local_dir
=
${
LOCAL_PATH
}
/nearby
--hdfs_dir
=
${
HDFS_PATH
}
/nearby
--task_type
=
infer
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment