Commit 3010cb4d authored by 张彦钊's avatar 张彦钊

修改测试文件

parent 7633f582
...@@ -28,7 +28,7 @@ def feature_engineer(): ...@@ -28,7 +28,7 @@ def feature_engineer():
ti.tidbMapDatabase("jerry_test") ti.tidbMapDatabase("jerry_test")
spark.sparkContext.setLogLevel("WARN") spark.sparkContext.setLogLevel("WARN")
sql = "select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer," \ sql = "select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer," \
"u.channel,c.top,e.device_id,cut.time,dl.app_list,e.diary_service_id,feat.level3_ids," \ "u.channel,c.top,cut.time,dl.app_list,e.diary_service_id,feat.level3_ids," \
"k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time " \ "k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time " \
"from esmm_train_data e left join user_feature u on e.device_id = u.device_id " \ "from esmm_train_data e left join user_feature u on e.device_id = u.device_id " \
"left join cid_type_top c on e.device_id = c.device_id " \ "left join cid_type_top c on e.device_id = c.device_id " \
...@@ -57,13 +57,13 @@ def feature_engineer(): ...@@ -57,13 +57,13 @@ def feature_engineer():
df = df.join(hospital,"diary_service_id","left_outer").fillna("na") df = df.join(hospital,"diary_service_id","left_outer").fillna("na")
df.show(6) df.show(6)
print(df.count()) print(df.count())
df = df.drop(["level2","diary_service_id"])
# db = pymysql.connect(host='172.16.30.143', port=3306, user='work',
# passwd='BJQaT9VzDcuPBqkd', db='zhengxing')
# df = df.drop_duplicates(["ucity_id", "level2_ids", "ccity_name", "device_type", "manufacturer", # df = df.drop_duplicates(["ucity_id", "level2_ids", "ccity_name", "device_type", "manufacturer",
...@@ -76,35 +76,8 @@ def feature_engineer(): ...@@ -76,35 +76,8 @@ def feature_engineer():
# 6: "device_type", 7: "manufacturer", 8: "channel", 9: "top", 10: "device_id", # 6: "device_type", 7: "manufacturer", 8: "channel", 9: "top", 10: "device_id",
# 11: "time", 12: "app_list", 13: "service_id", 14: "level3_ids", 15: "level2"}) # 11: "time", 12: "app_list", 13: "service_id", 14: "level3_ids", 15: "level2"})
# #
# db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
# sql = "select level2_id,treatment_method,price_min,price_max,treatment_time,maintain_time,recover_time " \
# "from train_Knowledge_network_data"
# knowledge = con_sql(db, sql)
# knowledge = knowledge.rename(columns={0: "level2", 1: "method", 2: "min", 3: "max",
# 4: "treatment_time", 5: "maintain_time", 6: "recover_time"})
# knowledge["level2"] = knowledge["level2"].astype("str")
#
# df = pd.merge(df, knowledge, on='level2', how='left')
# df = df.drop("level2", axis=1)
#
# service_id = tuple(df["service_id"].unique())
# db = pymysql.connect(host='172.16.30.143', port=3306, user='work',
# passwd='BJQaT9VzDcuPBqkd', db='zhengxing')
# sql = "select s.id,d.hospital_id from api_service s left join api_doctor d on s.doctor_id = d.id " \
# "where s.id in {}".format(service_id)
# hospital = con_sql(db, sql)
# hospital = hospital.rename(columns={0: "service_id", 1: "hospital_id"})
# # print(hospital.head())
# # print("hospital")
# # print(hospital.count())
# hospital["service_id"] = hospital["service_id"].astype("str")
# df = pd.merge(df, hospital, on='service_id', how='left')
# df = df.drop("service_id", axis=1)
#
# print(df.count())
#
# print("before")
# print(df.shape)
# #
# df = df.drop_duplicates(["ucity_id", "clevel2_id", "ccity_name", "device_type", "manufacturer", # df = df.drop_duplicates(["ucity_id", "clevel2_id", "ccity_name", "device_type", "manufacturer",
# "channel", "top", "time", "stat_date", "app_list", "hospital_id", "level3_ids"]) # "channel", "top", "time", "stat_date", "app_list", "hospital_id", "level3_ids"])
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment