Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
335c5551
Commit
335c5551
authored
Jun 19, 2019
by
Your Name
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
test dist predict
parent
cef1c8a8
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
68 additions
and
54 deletions
+68
-54
dist_predict.py
eda/esmm/Model_pipline/dist_predict.py
+68
-54
No files found.
eda/esmm/Model_pipline/dist_predict.py
View file @
335c5551
...
@@ -11,6 +11,53 @@ from pyspark import StorageLevel
...
@@ -11,6 +11,53 @@ from pyspark import StorageLevel
from
pyspark.sql
import
Row
from
pyspark.sql
import
Row
import
os
import
os
def
input_fn
(
filenames
,
batch_size
=
32
,
num_epochs
=
1
,
perform_shuffle
=
False
):
print
(
'Parsing'
,
filenames
)
def
_parse_fn
(
record
):
features
=
{
"y"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"z"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"ids"
:
tf
.
FixedLenFeature
([
15
],
tf
.
int64
),
"app_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"level2_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"level3_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag1_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag2_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag3_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag4_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag5_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag6_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag7_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"number"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"uid"
:
tf
.
VarLenFeature
(
tf
.
string
),
"city"
:
tf
.
VarLenFeature
(
tf
.
string
),
"cid_id"
:
tf
.
VarLenFeature
(
tf
.
int64
)
}
parsed
=
tf
.
parse_single_example
(
record
,
features
)
y
=
parsed
.
pop
(
'y'
)
z
=
parsed
.
pop
(
'z'
)
return
parsed
,
{
"y"
:
y
,
"z"
:
z
}
# Extract lines from input files using the Dataset API, can pass one filename or filename list
dataset
=
tf
.
data
.
TFRecordDataset
(
filenames
)
.
map
(
_parse_fn
,
num_parallel_calls
=
10
)
.
prefetch
(
500000
)
# multi-thread pre-process then prefetch
# Randomizes input using a window of 256 elements (read into memory)
if
perform_shuffle
:
dataset
=
dataset
.
shuffle
(
buffer_size
=
256
)
# epochs from blending together.
dataset
=
dataset
.
repeat
(
num_epochs
)
dataset
=
dataset
.
batch
(
batch_size
)
# Batch size to use
# dataset = dataset.padded_batch(batch_size, padded_shapes=({"feeds_ids": [None], "feeds_vals": [None], "title_ids": [None]}, [None])) #不定长补齐
#return dataset.make_one_shot_iterator()
iterator
=
dataset
.
make_one_shot_iterator
()
batch_features
,
batch_labels
=
iterator
.
get_next
()
#return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels
#print("-"*100)
#print(batch_features,batch_labels)
return
batch_features
,
batch_labels
def
model_fn
(
features
,
labels
,
mode
,
params
):
def
model_fn
(
features
,
labels
,
mode
,
params
):
"""Bulid Model function f(x) for Estimator."""
"""Bulid Model function f(x) for Estimator."""
#------hyperparameters----
#------hyperparameters----
...
@@ -40,6 +87,9 @@ def model_fn(features, labels, mode, params):
...
@@ -40,6 +87,9 @@ def model_fn(features, labels, mode, params):
tag6_list
=
features
[
'tag6_list'
]
tag6_list
=
features
[
'tag6_list'
]
tag7_list
=
features
[
'tag7_list'
]
tag7_list
=
features
[
'tag7_list'
]
number
=
features
[
'number'
]
number
=
features
[
'number'
]
uid
=
features
[
'uid'
]
city
=
features
[
'city'
]
cid_id
=
features
[
'cid_id'
]
#------build f(x)------
#------build f(x)------
...
@@ -61,6 +111,9 @@ def model_fn(features, labels, mode, params):
...
@@ -61,6 +111,9 @@ def model_fn(features, labels, mode, params):
tag2
,
tag3
,
tag4
,
tag5
,
tag6
,
tag7
],
axis
=
1
)
tag2
,
tag3
,
tag4
,
tag5
,
tag6
,
tag7
],
axis
=
1
)
sample_id
=
tf
.
sparse
.
to_dense
(
number
)
sample_id
=
tf
.
sparse
.
to_dense
(
number
)
uid
=
tf
.
sparse
.
to_dense
(
uid
)
city
=
tf
.
sparse
.
to_dense
(
city
)
cid_id
=
tf
.
sparse
.
to_dense
(
cid_id
)
with
tf
.
name_scope
(
"CVR_Task"
):
with
tf
.
name_scope
(
"CVR_Task"
):
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
...
@@ -94,7 +147,7 @@ def model_fn(features, labels, mode, params):
...
@@ -94,7 +147,7 @@ def model_fn(features, labels, mode, params):
pcvr
=
tf
.
sigmoid
(
y_cvr
)
pcvr
=
tf
.
sigmoid
(
y_cvr
)
pctcvr
=
pctr
*
pcvr
pctcvr
=
pctr
*
pcvr
predictions
=
{
"pcvr"
:
pcvr
,
"pctr"
:
pctr
,
"pctcvr"
:
pctcvr
,
"sample_id"
:
sample_id
}
predictions
=
{
"pcvr"
:
pcvr
,
"pctr"
:
pctr
,
"pctcvr"
:
pctcvr
,
"sample_id"
:
sample_id
,
"uid"
:
uid
,
"city"
:
city
,
"cid_id"
:
cid_id
}
export_outputs
=
{
tf
.
saved_model
.
signature_constants
.
DEFAULT_SERVING_SIGNATURE_DEF_KEY
:
tf
.
estimator
.
export
.
PredictOutput
(
predictions
)}
export_outputs
=
{
tf
.
saved_model
.
signature_constants
.
DEFAULT_SERVING_SIGNATURE_DEF_KEY
:
tf
.
estimator
.
export
.
PredictOutput
(
predictions
)}
# Provide an estimator spec for `ModeKeys.PREDICT`
# Provide an estimator spec for `ModeKeys.PREDICT`
if
mode
==
tf
.
estimator
.
ModeKeys
.
PREDICT
:
if
mode
==
tf
.
estimator
.
ModeKeys
.
PREDICT
:
...
@@ -103,49 +156,7 @@ def model_fn(features, labels, mode, params):
...
@@ -103,49 +156,7 @@ def model_fn(features, labels, mode, params):
predictions
=
predictions
,
predictions
=
predictions
,
export_outputs
=
export_outputs
)
export_outputs
=
export_outputs
)
def
input_fn
(
filenames
,
batch_size
=
32
,
num_epochs
=
1
,
perform_shuffle
=
False
):
print
(
'Parsing'
,
filenames
)
def
_parse_fn
(
record
):
features
=
{
"y"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"z"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"ids"
:
tf
.
FixedLenFeature
([
15
],
tf
.
int64
),
"app_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"level2_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"level3_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag1_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag2_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag3_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag4_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag5_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag6_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"tag7_list"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"number"
:
tf
.
VarLenFeature
(
tf
.
int64
)
}
parsed
=
tf
.
parse_single_example
(
record
,
features
)
y
=
parsed
.
pop
(
'y'
)
z
=
parsed
.
pop
(
'z'
)
return
parsed
,
{
"y"
:
y
,
"z"
:
z
}
# Extract lines from input files using the Dataset API, can pass one filename or filename list
dataset
=
tf
.
data
.
TFRecordDataset
(
filenames
)
.
map
(
_parse_fn
,
num_parallel_calls
=
10
)
.
prefetch
(
500000
)
# multi-thread pre-process then prefetch
# Randomizes input using a window of 256 elements (read into memory)
if
perform_shuffle
:
dataset
=
dataset
.
shuffle
(
buffer_size
=
256
)
# epochs from blending together.
dataset
=
dataset
.
repeat
(
num_epochs
)
dataset
=
dataset
.
batch
(
batch_size
)
# Batch size to use
# dataset = dataset.padded_batch(batch_size, padded_shapes=({"feeds_ids": [None], "feeds_vals": [None], "title_ids": [None]}, [None])) #不定长补齐
#return dataset.make_one_shot_iterator()
iterator
=
dataset
.
make_one_shot_iterator
()
batch_features
,
batch_labels
=
iterator
.
get_next
()
#return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels
#print("-"*100)
#print(batch_features,batch_labels)
return
batch_features
,
batch_labels
def
main
(
te_file
):
def
main
(
te_file
):
dt_dir
=
(
date
.
today
()
+
timedelta
(
-
1
))
.
strftime
(
'
%
Y
%
m
%
d'
)
dt_dir
=
(
date
.
today
()
+
timedelta
(
-
1
))
.
strftime
(
'
%
Y
%
m
%
d'
)
...
@@ -175,7 +186,7 @@ def main(te_file):
...
@@ -175,7 +186,7 @@ def main(te_file):
str_result
=
""
str_result
=
""
for
prob
in
preds
:
for
prob
in
preds
:
# ctcvr.append((prob["sample_id"][0],prob['pctcvr']))
# ctcvr.append((prob["sample_id"][0],prob['pctcvr']))
str_result
=
str_result
+
str
(
prob
[
"sample_id"
][
0
])
+
":"
+
str
(
prob
[
'pctcvr'
])
+
";"
str_result
=
str_result
+
str
(
prob
[
"sample_id"
][
0
])
+
":"
+
prob
[
"uid"
][
0
]
+
":"
+
prob
[
"city"
]
+
":"
+
prob
[
"cid_id"
]
+
":"
+
str
(
prob
[
'pctcvr'
])
+
";"
# return ctcvr
# return ctcvr
return
str_result
[:
-
1
]
return
str_result
[:
-
1
]
...
@@ -208,16 +219,19 @@ if __name__ == "__main__":
...
@@ -208,16 +219,19 @@ if __name__ == "__main__":
# te_files.append([path + "test_native/part-r-0000" + str(i)])
# te_files.append([path + "test_native/part-r-0000" + str(i)])
# for i in range(10,100):
# for i in range(10,100):
# te_files.append([path + "test_native/part-r-000" + str(i)])
# te_files.append([path + "test_native/part-r-000" + str(i)])
#
# rdd_te_files = spark.sparkContext.parallelize(te_files)
te_files
=
[
"hdfs://172.16.32.4:8020/strategy/esmm/test_native/part-r-00000"
]
# print("-"*100)
# print(rdd_te_files.collect())
rdd_te_files
=
spark
.
sparkContext
.
parallelize
(
te_files
)
# print("-" * 100)
print
(
"-"
*
100
)
# indices = rdd_te_files.repartition(100).map(lambda x: main(x))
print
(
rdd_te_files
.
collect
())
# print(indices.take(1))
print
(
"-"
*
100
)
#
indices
=
rdd_te_files
.
repartition
(
100
)
.
map
(
lambda
x
:
main
(
x
))
# te_result_dataframe = spark.createDataFrame(indices.flatMap(lambda x: x.split(";")).map(lambda l: Row(sample_id=l.split(":")[0],ctcvr=l.split(":")[1])))
print
(
indices
.
take
(
1
))
# te_result_dataframe.show()
te_result_dataframe
=
spark
.
createDataFrame
(
indices
.
flatMap
(
lambda
x
:
x
.
split
(
";"
))
.
map
(
lambda
l
:
Row
(
sample_id
=
l
.
split
(
":"
)[
0
],
uid
=
l
.
split
(
":"
)[
1
],
city
=
l
.
split
(
":"
)[
2
],
cid_id
=
l
.
split
(
":"
)[
3
],
ctcvr
=
l
.
split
(
":"
)[
4
])))
te_result_dataframe
.
show
()
# te_result_dataframe.toPandas().to_csv("/home/gmuser/esmm/native/pred.txt", header=True)
# te_result_dataframe.toPandas().to_csv("/home/gmuser/esmm/native/pred.txt", header=True)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment