Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
36608059
Commit
36608059
authored
Mar 26, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
test
parent
33cb78a9
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
32 additions
and
28 deletions
+32
-28
feature.py
tensnsorflow/es/feature.py
+31
-24
train.py
tensnsorflow/es/train.py
+1
-4
No files found.
tensnsorflow/es/feature.py
View file @
36608059
...
...
@@ -18,6 +18,19 @@ def con_sql(db,sql):
return
df
def
multi_hot
(
df
,
column
,
n
):
df
[
column
]
=
df
[
column
]
.
fillna
(
"lost_na"
)
app_list_value
=
[
i
.
split
(
","
)
for
i
in
df
[
column
]
.
unique
()]
app_list_unique
=
[]
for
i
in
app_list_value
:
app_list_unique
.
extend
(
i
)
app_list_unique
=
list
(
set
(
app_list_unique
))
number
=
len
(
app_list_unique
)
app_list_map
=
dict
(
zip
(
app_list_unique
,
list
(
range
(
n
,
number
+
n
))))
df
[
column
]
=
df
[
column
]
.
apply
(
app_list_func
,
args
=
(
app_list_map
,))
return
number
,
app_list_map
def
get_data
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from {}"
.
format
(
train_data_set
)
...
...
@@ -27,17 +40,18 @@ def get_data():
start
=
(
temp
-
datetime
.
timedelta
(
days
=
20
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,
e.clevel1_id
,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,
cl.l1,cl.l2,
e.device_id,cut.time,dl.app_list "
\
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,
feat.level2_ids
,e.ccity_name,"
\
"u.device_type,u.manufacturer,u.channel,c.top,e.device_id,cut.time,dl.app_list "
\
"from {} e left join user_feature u on e.device_id = u.device_id "
\
"left join cid_type_top c on e.device_id = c.device_id "
\
"left join cid_level2 cl on e.cid_id = cl.cid "
\
"left join cid_time_cut cut on e.cid_id = cut.cid "
\
"left join device_app_list dl on e.device_id = dl.device_id "
\
"left join diary_feat feat on e.cid_id = feat.diary_id "
\
"where e.stat_date >= '{}'"
.
format
(
train_data_set
,
start
)
df
=
con_sql
(
db
,
sql
)
# print(df.shape)
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"stat_date"
,
3
:
"ucity_id"
,
4
:
"clevel
1
_id"
,
5
:
"ccity_name"
,
df
=
df
.
rename
(
columns
=
{
0
:
"y"
,
1
:
"z"
,
2
:
"stat_date"
,
3
:
"ucity_id"
,
4
:
"clevel
2
_id"
,
5
:
"ccity_name"
,
6
:
"device_type"
,
7
:
"manufacturer"
,
8
:
"channel"
,
9
:
"top"
,
10
:
"l1"
,
11
:
"l2"
,
12
:
"device_id"
,
13
:
"time"
,
14
:
"app_list"
})
print
(
"esmm data ok"
)
...
...
@@ -46,30 +60,23 @@ def get_data():
print
(
df
.
shape
)
print
(
"after"
)
df
=
df
.
drop_duplicates
()
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"clevel
1
_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
df
=
df
.
drop_duplicates
([
"ucity_id"
,
"clevel
2
_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"l1"
,
"l2"
,
"time"
,
"stat_date"
,
"app_list"
])
df
[
"app_list"
]
=
df
[
"app_list"
]
.
fillna
(
"lost_na"
)
app_list_value
=
[
i
.
split
(
","
)
for
i
in
df
[
"app_list"
]
.
unique
()]
app_list_unique
=
[]
for
i
in
app_list_value
:
app_list_unique
.
extend
(
i
)
app_list_unique
=
list
(
set
(
app_list_unique
))
app_list_map
=
dict
(
zip
(
app_list_unique
,
list
(
range
(
1
,
len
(
app_list_unique
)
+
1
)))
)
df
[
"app_list"
]
=
df
[
"app_list"
]
.
apply
(
app_list_func
,
args
=
(
app_list_map
,
))
print
(
"after applist map"
)
print
(
df
.
head
(
2
))
app_list_number
,
app_list_map
=
multi_hot
(
df
,
"app_list"
,
1
)
level2_number
,
level2_map
=
multi_hot
(
df
,
"clevel2_id"
,
1
+
app_list_number
)
# df["app_list"] = df["app_list"].fillna("lost_na")
# app_list_value = [i.split(",") for i in df["app_list"].unique()]
# app_list_unique = []
# for i in app_list_value:
# app_list_unique.extend(i
)
# app_list_unique = list(set(app_list_unique
))
# app_list_map = dict(zip(app_list_unique, list(range(1, len(app_list_unique) + 1)))
)
# df["app_list"] = df["app_list"].apply(app_list_func,args=(app_list_map,
))
# print(df.shape)
# print("exp numbers:")
# print(df[df["y"] == 0].shape)
# print("click numbers")
# print(df[(df["y"] == 1)&(df["z"] == 0)].shape)
# print("buy numbers")
# print(df[(df["y"] == 1) & (df["z"] == 1)].shape)
unique_values
=
[]
features
=
[
"ucity_id"
,
"c
level1_id"
,
"c
city_name"
,
"device_type"
,
"manufacturer"
,
features
=
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"time"
,
"stat_date"
]
for
i
in
features
:
df
[
i
]
=
df
[
i
]
.
astype
(
"str"
)
...
...
@@ -88,13 +95,13 @@ def get_data():
print
(
len
(
unique_values
))
print
(
df
.
head
(
2
))
temp
=
list
(
range
(
len
(
app_list_unique
)
+
1
,
len
(
app_list_unique
)
+
len
(
unique_values
)
+
1
))
temp
=
list
(
range
(
1
+
app_list_number
+
level2_number
,
1
+
app_list_number
+
level2_number
+
len
(
unique_values
)
))
value_map
=
dict
(
zip
(
unique_values
,
temp
))
df
=
df
.
drop
(
"device_id"
,
axis
=
1
)
train
=
df
[
df
[
"stat_date"
]
!=
validate_date
+
"stat_date"
]
test
=
df
[
df
[
"stat_date"
]
==
validate_date
+
"stat_date"
]
for
i
in
[
"ucity_id"
,
"c
level1_id"
,
"c
city_name"
,
"device_type"
,
"manufacturer"
,
for
i
in
[
"ucity_id"
,
"ccity_name"
,
"device_type"
,
"manufacturer"
,
"channel"
,
"top"
,
"l1"
,
"time"
,
"stat_date"
,
"l2"
]:
train
[
i
]
=
train
[
i
]
.
map
(
value_map
)
test
[
i
]
=
test
[
i
]
.
map
(
value_map
)
...
...
tensnsorflow/es/train.py
View file @
36608059
...
...
@@ -110,10 +110,7 @@ def model_fn(features, labels, mode, params):
with
tf
.
variable_scope
(
"Shared-Embedding-layer"
):
embedding_id
=
tf
.
nn
.
embedding_lookup
(
Feat_Emb
,
feat_ids
)
app_id
=
tf
.
nn
.
embedding_lookup_sparse
(
Feat_Emb
,
sp_ids
=
app_list
,
sp_weights
=
None
,
combiner
=
"sum"
)
print
(
"a"
)
print
(
embedding_id
.
shape
)
print
(
"b"
)
print
(
app_id
.
shape
)
# x_concat = tf.reshape(embedding_id,shape=[-1, common_dims]) # None * (F * K)
x_concat
=
tf
.
concat
([
tf
.
reshape
(
embedding_id
,
shape
=
[
-
1
,
common_dims
]),
app_id
],
axis
=
1
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment