Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
38beeac6
Commit
38beeac6
authored
Jan 16, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change int to float
parent
c9afa57f
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
25 additions
and
26 deletions
+25
-26
feature_engineering.py
tensnsorflow/feature_engineering.py
+3
-4
test.py
tensnsorflow/test.py
+12
-12
train.py
tensnsorflow/train.py
+10
-10
No files found.
tensnsorflow/feature_engineering.py
View file @
38beeac6
...
@@ -63,9 +63,8 @@ def get_data():
...
@@ -63,9 +63,8 @@ def get_data():
test
=
df
[
df
[
"stat_date"
]
==
validate_date
+
"stat_date"
]
test
=
df
[
df
[
"stat_date"
]
==
validate_date
+
"stat_date"
]
for
i
in
features
:
for
i
in
features
:
train
[
i
]
=
train
[
i
]
.
map
(
value_map
)
train
[
i
]
=
train
[
i
]
.
map
(
value_map
)
train
[
i
]
=
train
[
i
]
.
astype
(
'int64'
)
test
[
i
]
=
test
[
i
]
.
map
(
value_map
)
test
[
i
]
=
test
[
i
]
.
map
(
value_map
)
test
[
i
]
=
test
[
i
]
.
astype
(
'int64'
)
print
(
"train shape"
)
print
(
"train shape"
)
print
(
train
.
shape
)
print
(
train
.
shape
)
...
@@ -123,11 +122,11 @@ def get_predict(date,value_map):
...
@@ -123,11 +122,11 @@ def get_predict(date,value_map):
native_pre
[
i
]
=
native_pre
[
i
]
.
map
(
value_map
)
native_pre
[
i
]
=
native_pre
[
i
]
.
map
(
value_map
)
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
native_pre
[
i
]
=
native_pre
[
i
]
.
fillna
(
0
)
native_pre
[
i
]
=
native_pre
[
i
]
.
fillna
(
0
)
native_pre
[
i
]
=
native_pre
[
i
]
.
astype
(
'int64'
)
nearby_pre
[
i
]
=
nearby_pre
[
i
]
.
map
(
value_map
)
nearby_pre
[
i
]
=
nearby_pre
[
i
]
.
map
(
value_map
)
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
nearby_pre
[
i
]
=
nearby_pre
[
i
]
.
fillna
(
0
)
nearby_pre
[
i
]
=
nearby_pre
[
i
]
.
fillna
(
0
)
nearby_pre
[
i
]
=
nearby_pre
[
i
]
.
astype
(
'int64'
)
print
(
"native"
)
print
(
"native"
)
print
(
native_pre
.
shape
)
print
(
native_pre
.
shape
)
...
...
tensnsorflow/test.py
View file @
38beeac6
...
@@ -29,18 +29,18 @@ def gen_tfrecords(in_file):
...
@@ -29,18 +29,18 @@ def gen_tfrecords(in_file):
for
i
in
range
(
df
.
shape
[
0
]):
for
i
in
range
(
df
.
shape
[
0
]):
features
=
tf
.
train
.
Features
(
feature
=
{
features
=
tf
.
train
.
Features
(
feature
=
{
"y"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64
List
(
value
=
[
df
[
"y"
][
i
]])),
"y"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
Float
List
(
value
=
[
df
[
"y"
][
i
]])),
"z"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64
List
(
value
=
[
df
[
"z"
][
i
]])),
"z"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
Float
List
(
value
=
[
df
[
"z"
][
i
]])),
"top"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64
List
(
value
=
[
df
[
"top"
][
i
]])),
"top"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
Float
List
(
value
=
[
df
[
"top"
][
i
]])),
"channel"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64
List
(
value
=
[
df
[
"channel"
][
i
]])),
"channel"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
Float
List
(
value
=
[
df
[
"channel"
][
i
]])),
"ucity_id"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64
List
(
value
=
[
df
[
"ucity_id"
][
i
]])),
"ucity_id"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
Float
List
(
value
=
[
df
[
"ucity_id"
][
i
]])),
"clevel1_id"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64
List
(
value
=
[
df
[
"clevel1_id"
][
i
]])),
"clevel1_id"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
Float
List
(
value
=
[
df
[
"clevel1_id"
][
i
]])),
"ccity_name"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64
List
(
value
=
[
df
[
"ccity_name"
][
i
]])),
"ccity_name"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
Float
List
(
value
=
[
df
[
"ccity_name"
][
i
]])),
"device_type"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64
List
(
value
=
[
df
[
"device_type"
][
i
]])),
"device_type"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
Float
List
(
value
=
[
df
[
"device_type"
][
i
]])),
"manufacturer"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64
List
(
value
=
[
df
[
"manufacturer"
][
i
]])),
"manufacturer"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
Float
List
(
value
=
[
df
[
"manufacturer"
][
i
]])),
"level2_ids"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64
List
(
value
=
[
df
[
"level2_ids"
][
i
]])),
"level2_ids"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
Float
List
(
value
=
[
df
[
"level2_ids"
][
i
]])),
"time"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64
List
(
value
=
[
df
[
"time"
][
i
]])),
"time"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
Float
List
(
value
=
[
df
[
"time"
][
i
]])),
"stat_date"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64
List
(
value
=
[
df
[
"stat_date"
][
i
]]))
"stat_date"
:
tf
.
train
.
Feature
(
float_list
=
tf
.
train
.
Float
List
(
value
=
[
df
[
"stat_date"
][
i
]]))
})
})
example
=
tf
.
train
.
Example
(
features
=
features
)
example
=
tf
.
train
.
Example
(
features
=
features
)
...
...
tensnsorflow/train.py
View file @
38beeac6
...
@@ -53,16 +53,16 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
...
@@ -53,16 +53,16 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
features
=
{
features
=
{
"y"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"y"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"z"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"z"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"top"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"top"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"channel"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"channel"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"ucity_id"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"ucity_id"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"clevel1_id"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"clevel1_id"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"ccity_name"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"ccity_name"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"device_type"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"device_type"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"manufacturer"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"manufacturer"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"level2_ids"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"level2_ids"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"time"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"time"
:
tf
.
FixedLenFeature
([],
tf
.
float32
),
"stat_date"
:
tf
.
FixedLenFeature
([],
tf
.
int64
)
"stat_date"
:
tf
.
FixedLenFeature
([],
tf
.
float32
)
}
}
parsed
=
tf
.
parse_single_example
(
record
,
features
)
parsed
=
tf
.
parse_single_example
(
record
,
features
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment