Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
3a321457
Commit
3a321457
authored
Mar 28, 2019
by
王志伟
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of
http://git.wanmeizhensuo.com/ML/ffm-baseline
parents
3640c716
7f03848e
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
13 additions
and
17 deletions
+13
-17
submit.sh
eda/esmm/Model_pipline/submit.sh
+3
-3
EsmmData.scala
eda/feededa/src/main/scala/com/gmei/EsmmData.scala
+4
-4
GmeiConfig.scala
eda/feededa/src/main/scala/com/gmei/GmeiConfig.scala
+1
-0
feature.py
tensnsorflow/es/feature.py
+2
-1
pipeline.sh
tensnsorflow/es/pipeline.sh
+3
-3
test.py
tensnsorflow/test.py
+0
-6
No files found.
eda/esmm/Model_pipline/submit.sh
View file @
3a321457
...
...
@@ -13,7 +13,7 @@ rm ${DATA_PATH}/nearby/*
rm
-r
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/201
*
echo
"data"
${
PYTHON_PATH
}
${
MODEL_PATH
}
/feature.py
>
${
DATA_PATH
}
/
infer
.log
${
PYTHON_PATH
}
${
MODEL_PATH
}
/feature.py
>
${
DATA_PATH
}
/
feature
.log
echo
"csv to tfrecord"
${
PYTHON_PATH
}
${
MODEL_PATH
}
/to_tfrecord.py
--input_dir
=
${
DATA_PATH
}
/tr/
--output_dir
=
${
DATA_PATH
}
/tr/
...
...
@@ -37,11 +37,11 @@ ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001
echo
"infer native..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
11
--feature_size
=
2000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/native
--task_type
=
infer
>
${
DATA_PATH
}
/infer.log
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
11
--feature_size
=
2000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/native
--task_type
=
infer
>
${
DATA_PATH
}
/
native_
infer.log
echo
"infer nearby..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
11
--feature_size
=
2000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/nearby
--task_type
=
infer
>
${
DATA_PATH
}
/infer.log
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.3,0.3,0.3,0.3,0.3
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
11
--feature_size
=
2000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/nearby
--task_type
=
infer
>
${
DATA_PATH
}
/
nearby_
infer.log
echo
"sort and 2sql"
${
PYTHON_PATH
}
${
MODEL_PATH
}
/to_database.py
...
...
eda/feededa/src/main/scala/com/gmei/EsmmData.scala
View file @
3a321457
...
...
@@ -91,8 +91,8 @@ object EsmmData {
"""
.
stripMargin
)
// imp_data.show()
//
println("imp_data.count()")
//
println(imp_data.count())
println
(
"imp_data.count()"
)
println
(
imp_data
.
count
())
val
clk_data
=
sc
.
sql
(
...
...
@@ -105,8 +105,8 @@ object EsmmData {
"""
.
stripMargin
)
// clk_data.show()
//
println("clk_data.count()")
//
println(clk_data.count())
println
(
"clk_data.count()"
)
println
(
clk_data
.
count
())
...
...
eda/feededa/src/main/scala/com/gmei/GmeiConfig.scala
View file @
3a321457
...
...
@@ -109,3 +109,4 @@ object GmeiConfig extends Serializable {
}
}
tensnsorflow/es/feature.py
View file @
3a321457
...
...
@@ -37,7 +37,7 @@ def get_data():
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
temp
=
datetime
.
datetime
.
strptime
(
validate_date
,
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
2
0
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
start
=
(
temp
-
datetime
.
timedelta
(
days
=
30
0
))
.
strftime
(
"
%
Y-
%
m-
%
d"
)
print
(
start
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,"
\
...
...
@@ -143,6 +143,7 @@ def get_predict(date,value_map,app_list_map,level2_map):
10
:
"device_id"
,
11
:
"cid_id"
,
12
:
"time"
,
13
:
"app_list"
})
df
[
"stat_date"
]
=
date
print
(
df
.
head
(
6
))
df
[
"app_list"
]
=
df
[
"app_list"
]
.
fillna
(
"lost_na"
)
df
[
"app_list"
]
=
df
[
"app_list"
]
.
apply
(
app_list_func
,
args
=
(
app_list_map
,))
df
[
"clevel2_id"
]
=
df
[
"clevel2_id"
]
.
fillna
(
"lost_na"
)
...
...
tensnsorflow/es/pipeline.sh
View file @
3a321457
...
...
@@ -12,7 +12,7 @@ rm ${DATA_PATH}/nearby/*
rm
-r
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/201
*
echo
"data"
${
PYTHON_PATH
}
${
MODEL_PATH
}
/feature.py
>
${
DATA_PATH
}
/
infer
.log
${
PYTHON_PATH
}
${
MODEL_PATH
}
/feature.py
>
${
DATA_PATH
}
/
feature
.log
echo
"csv to tfrecord"
${
PYTHON_PATH
}
${
MODEL_PATH
}
/to_tfrecord.py
--input_dir
=
${
DATA_PATH
}
/tr/
--output_dir
=
${
DATA_PATH
}
/tr/
...
...
@@ -36,11 +36,11 @@ ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001
echo
"infer native..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.5,0.5,0.5,0.5,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
8
--feature_size
=
300000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/native
--task_type
=
infer
>
${
DATA_PATH
}
/infer.log
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.5,0.5,0.5,0.5,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
8
--feature_size
=
300000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/native
--task_type
=
infer
>
${
DATA_PATH
}
/
native_
infer.log
echo
"infer nearby..."
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.5,0.5,0.5,0.5,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
8
--feature_size
=
300000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/nearby
--task_type
=
infer
>
${
DATA_PATH
}
/infer.log
${
PYTHON_PATH
}
${
MODEL_PATH
}
/train.py
--ctr_task_wgt
=
0.9
--learning_rate
=
0.0001
--deep_layers
=
512,256,128,64,32
--dropout
=
0.5,0.5,0.5,0.5,0.5
--optimizer
=
Adam
--num_epochs
=
1
--embedding_size
=
16
--batch_size
=
1024
--field_size
=
8
--feature_size
=
300000
--l2_reg
=
0.005
--log_steps
=
100
--num_threads
=
36
--model_dir
=
${
DATA_PATH
}
/model_ckpt/DeepCvrMTL/
--data_dir
=
${
DATA_PATH
}
/nearby
--task_type
=
infer
>
${
DATA_PATH
}
/
nearby_
infer.log
echo
"sort and 2sql"
${
PYTHON_PATH
}
${
MODEL_PATH
}
/to_database.py
tensnsorflow/test.py
View file @
3a321457
...
...
@@ -64,8 +64,3 @@ def con_sql(db,sql):
if
__name__
==
'__main__'
:
db
=
pymysql
.
connect
(
host
=
'10.66.157.11'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select max(stat_date) from esmm_train_data"
validate_date
=
con_sql
(
db
,
sql
)[
0
]
.
values
.
tolist
()[
0
]
print
(
"validate_date:"
+
validate_date
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment