Commit 3a321457 authored by 王志伟's avatar 王志伟
parents 3640c716 7f03848e
...@@ -13,7 +13,7 @@ rm ${DATA_PATH}/nearby/* ...@@ -13,7 +13,7 @@ rm ${DATA_PATH}/nearby/*
rm -r ${DATA_PATH}/model_ckpt/DeepCvrMTL/201* rm -r ${DATA_PATH}/model_ckpt/DeepCvrMTL/201*
echo "data" echo "data"
${PYTHON_PATH} ${MODEL_PATH}/feature.py > ${DATA_PATH}/infer.log ${PYTHON_PATH} ${MODEL_PATH}/feature.py > ${DATA_PATH}/feature.log
echo "csv to tfrecord" echo "csv to tfrecord"
${PYTHON_PATH} ${MODEL_PATH}/to_tfrecord.py --input_dir=${DATA_PATH}/tr/ --output_dir=${DATA_PATH}/tr/ ${PYTHON_PATH} ${MODEL_PATH}/to_tfrecord.py --input_dir=${DATA_PATH}/tr/ --output_dir=${DATA_PATH}/tr/
...@@ -37,11 +37,11 @@ ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001 ...@@ -37,11 +37,11 @@ ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001
echo "infer native..." echo "infer native..."
${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.3,0.3,0.3,0.3,0.3 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=1024 --field_size=11 --feature_size=2000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/native --task_type=infer > ${DATA_PATH}/infer.log ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.3,0.3,0.3,0.3,0.3 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=1024 --field_size=11 --feature_size=2000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/native --task_type=infer > ${DATA_PATH}/native_infer.log
echo "infer nearby..." echo "infer nearby..."
${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.3,0.3,0.3,0.3,0.3 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=1024 --field_size=11 --feature_size=2000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/nearby --task_type=infer > ${DATA_PATH}/infer.log ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.3,0.3,0.3,0.3,0.3 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=1024 --field_size=11 --feature_size=2000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/nearby --task_type=infer > ${DATA_PATH}/nearby_infer.log
echo "sort and 2sql" echo "sort and 2sql"
${PYTHON_PATH} ${MODEL_PATH}/to_database.py ${PYTHON_PATH} ${MODEL_PATH}/to_database.py
......
...@@ -91,8 +91,8 @@ object EsmmData { ...@@ -91,8 +91,8 @@ object EsmmData {
""".stripMargin """.stripMargin
) )
// imp_data.show() // imp_data.show()
// println("imp_data.count()") println("imp_data.count()")
// println(imp_data.count()) println(imp_data.count())
val clk_data = sc.sql( val clk_data = sc.sql(
...@@ -105,8 +105,8 @@ object EsmmData { ...@@ -105,8 +105,8 @@ object EsmmData {
""".stripMargin """.stripMargin
) )
// clk_data.show() // clk_data.show()
// println("clk_data.count()") println("clk_data.count()")
// println(clk_data.count()) println(clk_data.count())
......
...@@ -109,3 +109,4 @@ object GmeiConfig extends Serializable { ...@@ -109,3 +109,4 @@ object GmeiConfig extends Serializable {
} }
} }
...@@ -37,7 +37,7 @@ def get_data(): ...@@ -37,7 +37,7 @@ def get_data():
validate_date = con_sql(db, sql)[0].values.tolist()[0] validate_date = con_sql(db, sql)[0].values.tolist()[0]
print("validate_date:" + validate_date) print("validate_date:" + validate_date)
temp = datetime.datetime.strptime(validate_date, "%Y-%m-%d") temp = datetime.datetime.strptime(validate_date, "%Y-%m-%d")
start = (temp - datetime.timedelta(days=20)).strftime("%Y-%m-%d") start = (temp - datetime.timedelta(days=300)).strftime("%Y-%m-%d")
print(start) print(start)
db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test') db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name," \ sql = "select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name," \
...@@ -143,6 +143,7 @@ def get_predict(date,value_map,app_list_map,level2_map): ...@@ -143,6 +143,7 @@ def get_predict(date,value_map,app_list_map,level2_map):
10: "device_id", 11: "cid_id", 12: "time",13:"app_list"}) 10: "device_id", 11: "cid_id", 12: "time",13:"app_list"})
df["stat_date"] = date df["stat_date"] = date
print(df.head(6))
df["app_list"] = df["app_list"].fillna("lost_na") df["app_list"] = df["app_list"].fillna("lost_na")
df["app_list"] = df["app_list"].apply(app_list_func,args=(app_list_map,)) df["app_list"] = df["app_list"].apply(app_list_func,args=(app_list_map,))
df["clevel2_id"] = df["clevel2_id"].fillna("lost_na") df["clevel2_id"] = df["clevel2_id"].fillna("lost_na")
......
...@@ -12,7 +12,7 @@ rm ${DATA_PATH}/nearby/* ...@@ -12,7 +12,7 @@ rm ${DATA_PATH}/nearby/*
rm -r ${DATA_PATH}/model_ckpt/DeepCvrMTL/201* rm -r ${DATA_PATH}/model_ckpt/DeepCvrMTL/201*
echo "data" echo "data"
${PYTHON_PATH} ${MODEL_PATH}/feature.py > ${DATA_PATH}/infer.log ${PYTHON_PATH} ${MODEL_PATH}/feature.py > ${DATA_PATH}/feature.log
echo "csv to tfrecord" echo "csv to tfrecord"
${PYTHON_PATH} ${MODEL_PATH}/to_tfrecord.py --input_dir=${DATA_PATH}/tr/ --output_dir=${DATA_PATH}/tr/ ${PYTHON_PATH} ${MODEL_PATH}/to_tfrecord.py --input_dir=${DATA_PATH}/tr/ --output_dir=${DATA_PATH}/tr/
...@@ -36,11 +36,11 @@ ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001 ...@@ -36,11 +36,11 @@ ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001
echo "infer native..." echo "infer native..."
${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.5,0.5,0.5,0.5,0.5 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=1024 --field_size=8 --feature_size=300000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/native --task_type=infer > ${DATA_PATH}/infer.log ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.5,0.5,0.5,0.5,0.5 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=1024 --field_size=8 --feature_size=300000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/native --task_type=infer > ${DATA_PATH}/native_infer.log
echo "infer nearby..." echo "infer nearby..."
${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.5,0.5,0.5,0.5,0.5 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=1024 --field_size=8 --feature_size=300000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/nearby --task_type=infer > ${DATA_PATH}/infer.log ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.9 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.5,0.5,0.5,0.5,0.5 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=1024 --field_size=8 --feature_size=300000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/nearby --task_type=infer > ${DATA_PATH}/nearby_infer.log
echo "sort and 2sql" echo "sort and 2sql"
${PYTHON_PATH} ${MODEL_PATH}/to_database.py ${PYTHON_PATH} ${MODEL_PATH}/to_database.py
...@@ -64,8 +64,3 @@ def con_sql(db,sql): ...@@ -64,8 +64,3 @@ def con_sql(db,sql):
if __name__ == '__main__': if __name__ == '__main__':
db = pymysql.connect(host='10.66.157.11', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select max(stat_date) from esmm_train_data"
validate_date = con_sql(db, sql)[0].values.tolist()[0]
print("validate_date:" + validate_date)
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment