Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
3b4f0890
Commit
3b4f0890
authored
Dec 11, 2018
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add data
parent
36ec1aa3
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
14 additions
and
13 deletions
+14
-13
ffm.py
tensnsorflow/ffm.py
+14
-13
No files found.
tensnsorflow/ffm.py
View file @
3b4f0890
...
@@ -31,20 +31,20 @@ def test():
...
@@ -31,20 +31,20 @@ def test():
def
get_data
():
def
get_data
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select device_id,y,z,stat_date,ucity_id,cid_id,clevel1_id,ccity_name from esmm_train_data
limit 2000
"
sql
=
"select device_id,y,z,stat_date,ucity_id,cid_id,clevel1_id,ccity_name from esmm_train_data"
df
=
con_sql
(
db
,
sql
)
df
=
con_sql
(
db
,
sql
)
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"y"
,
2
:
"z"
,
3
:
"stat_date"
,
4
:
"ucity_id"
,
5
:
"cid_id"
,
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"y"
,
2
:
"z"
,
3
:
"stat_date"
,
4
:
"ucity_id"
,
5
:
"cid_id"
,
6
:
"clevel1_id"
,
7
:
"ccity_name"
})
6
:
"clevel1_id"
,
7
:
"ccity_name"
})
print
(
"esmm data ok"
)
print
(
"esmm data ok"
)
print
(
df
.
head
())
print
(
df
.
head
())
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
astype
(
"str"
)
#
df["clevel1_id"] = df["clevel1_id"].astype("str")
df
[
"cid_id"
]
=
df
[
"cid_id"
]
.
astype
(
"str"
)
#
df["cid_id"] = df["cid_id"].astype("str")
df
[
"y"
]
=
df
[
"y"
]
.
astype
(
"str"
)
#
df["y"] = df["y"].astype("str")
df
[
"z"
]
=
df
[
"z"
]
.
astype
(
"str"
)
#
df["z"] = df["z"].astype("str")
df
[
"y"
]
=
df
[
"stat_date"
]
.
str
.
cat
([
df
[
"device_id"
]
.
values
.
tolist
(),
df
[
"ucity_id"
]
.
values
.
tolist
(),
df
[
"cid_id"
]
.
values
.
tolist
(),
#
df["y"] = df["stat_date"].str.cat([df["device_id"].values.tolist(),df["ucity_id"].values.tolist(), df["cid_id"].values.tolist(),
df
[
"y"
]
.
values
.
tolist
(),
df
[
"z"
]
.
values
.
tolist
()],
sep
=
","
)
#
df["y"].values.tolist(),df["z"].values.tolist()], sep=",")
df
=
df
.
drop
(
"z"
,
axis
=
1
)
#
df = df.drop("z", axis=1)
print
(
df
.
head
())
#
print(df.head())
print
(
"shape"
)
print
(
"shape"
)
print
(
df
.
shape
)
print
(
df
.
shape
)
device_tuple
=
tuple
(
set
(
df
[
"device_id"
]
.
values
.
tolist
()))
device_tuple
=
tuple
(
set
(
df
[
"device_id"
]
.
values
.
tolist
()))
...
@@ -98,11 +98,12 @@ def transform(df):
...
@@ -98,11 +98,12 @@ def transform(df):
def
get_statistics
(
device_tuple
):
def
get_statistics
(
device_tuple
):
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'eagle'
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'eagle'
)
sql
=
"select device_id,device_type,total,精选,直播,鼻部,眼部,微整,牙齿,轮廓,美肤抗衰,"
\
sql
=
"select device_id,device_type,total,精选,直播,鼻部,眼部,微整,牙齿,轮廓,美肤抗衰,"
\
"吸脂,脂肪填充,隆胸,私密,毛发管理,公立,韩国 from home_tab_click
where device_id in {}"
.
format
(
device_tuple
)
"吸脂,脂肪填充,隆胸,私密,毛发管理,公立,韩国 from home_tab_click
"
df
=
con_sql
(
db
,
sql
)
df
=
con_sql
(
db
,
sql
)
.
drop_duplicates
()
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"device_type"
,
2
:
"channel"
,
3
:
"total"
})
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"device_type"
,
2
:
"channel"
,
3
:
"total"
})
for
i
in
df
.
columns
.
difference
([
"device_id"
,
"device_type"
,
"channel"
,
"total"
]):
# for i in df.columns.difference(["device_id", "device_type","channel","total"]):
df
[
i
]
=
df
[
i
]
/
df
[
"total"
]
# df[i] = df[i]/df["total"]
# df = df.drop("total", axis=1)
return
df
return
df
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment