Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
3b881969
Commit
3b881969
authored
Dec 12, 2018
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change transform
parent
8f18a377
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
45 additions
and
12 deletions
+45
-12
ffm.py
tensnsorflow/ffm.py
+45
-12
No files found.
tensnsorflow/ffm.py
View file @
3b881969
...
@@ -45,7 +45,8 @@ def get_data():
...
@@ -45,7 +45,8 @@ def get_data():
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"y"
,
2
:
"z"
,
3
:
"stat_date"
,
4
:
"ucity_id"
,
5
:
"cid_id"
,
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"y"
,
2
:
"z"
,
3
:
"stat_date"
,
4
:
"ucity_id"
,
5
:
"cid_id"
,
6
:
"clevel1_id"
,
7
:
"ccity_name"
})
6
:
"clevel1_id"
,
7
:
"ccity_name"
})
print
(
"esmm data ok"
)
print
(
"esmm data ok"
)
ucity_id
=
list
(
set
(
df
[
"ucity_id"
]
.
values
.
tolist
()))
cid
=
list
(
set
(
df
[
"cid_id"
]
.
values
.
tolist
()))
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
astype
(
"str"
)
df
[
"clevel1_id"
]
=
df
[
"clevel1_id"
]
.
astype
(
"str"
)
df
[
"cid_id"
]
=
df
[
"cid_id"
]
.
astype
(
"str"
)
df
[
"cid_id"
]
=
df
[
"cid_id"
]
.
astype
(
"str"
)
df
[
"y"
]
=
df
[
"y"
]
.
astype
(
"str"
)
df
[
"y"
]
=
df
[
"y"
]
.
astype
(
"str"
)
...
@@ -63,16 +64,15 @@ def get_data():
...
@@ -63,16 +64,15 @@ def get_data():
print
(
df
.
shape
)
print
(
df
.
shape
)
df
=
df
.
drop
(
"device_id"
,
axis
=
1
)
df
=
df
.
drop
(
"device_id"
,
axis
=
1
)
print
(
df
.
head
())
print
(
df
.
head
())
transform
(
df
,
validate_date
)
transform
(
df
,
validate_date
)
return
ucity_id
,
cid
def
transform
(
df
,
validate_date
):
def
transform
(
df
,
validate_date
):
model
=
multiFFMFormatPandas
()
model
=
multiFFMFormatPandas
()
for
i
in
[
200000
,
160000
,
130000
]:
temp
=
model
.
fit_transform
(
df
,
y
=
"y"
,
n
=
160000
,
processes
=
18
)
a
=
time
.
time
()
temp
=
model
.
fit_transform
(
df
,
y
=
"y"
,
n
=
i
,
processes
=
18
)
b
=
time
.
time
()
print
(
"{}cost{}"
.
format
(
i
,
b
-
a
))
# df = pd.DataFrame(df)
# df = pd.DataFrame(df)
# df["stat_date"] = df[0].apply(lambda x: x.split(",")[0])
# df["stat_date"] = df[0].apply(lambda x: x.split(",")[0])
# df["device_id"] = df[0].apply(lambda x: x.split(",")[1])
# df["device_id"] = df[0].apply(lambda x: x.split(",")[1])
...
@@ -124,11 +124,43 @@ def get_statistics():
...
@@ -124,11 +124,43 @@ def get_statistics():
def
get_predict_set
():
def
get_predict_set
():
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select device_id,y,z,stat_date,ucity_id,cid_id,clevel1_id,ccity_name from esmm_pre_data where label = 0"
sql
=
"select device_id,y,z,stat_date,ucity_id,cid_id,clevel1_id,ccity_name,label from esmm_pre_data"
native_pre
=
con_sql
(
db
,
sql
)
df
=
con_sql
(
db
,
sql
)
native_pre
=
native_pre
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"y"
,
2
:
"z"
,
3
:
"stat_date"
,
4
:
"ucity_id"
,
5
:
"cid_id"
,
df
=
df
.
rename
(
columns
=
{
0
:
"device_id"
,
1
:
"y"
,
2
:
"z"
,
3
:
"stat_date"
,
4
:
"ucity_id"
,
5
:
"cid_id"
,
6
:
"clevel1_id"
,
7
:
"ccity_name"
})
6
:
"clevel1_id"
,
7
:
"ccity_name"
,
8
:
"label"
})
print
(
"native_pre ok"
)
print
(
"native_pre ok"
+
df
.
shape
)
# df["clevel1_id"] = df["clevel1_id"].astype("str")
# df["cid_id"] = df["cid_id"].astype("str")
# df["y"] = df["y"].astype("str")
# df["z"] = df["z"].astype("str")
# df["y"] = df["label"].str.cat(
# [df["device_id"].values.tolist(), df["ucity_id"].values.tolist(), df["cid_id"].values.tolist(),
# df["y"].values.tolist(), df["z"].values.tolist()], sep=",")
# df = df.drop(["z","label"], axis=1)
device
=
tuple
(
set
(
df
[
"device_id"
]
.
values
.
tolist
()))
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'eagle'
)
sql
=
"select device_id,total,精选,直播,鼻部,眼部,微整,牙齿,轮廓,美肤抗衰,"
\
"吸脂,脂肪填充,隆胸,私密,毛发管理,公立,韩国 from home_tab_click where device_id in {}"
.
format
(
device
)
statics
=
con_sql
(
db
,
sql
)
native_pre
=
pd
.
merge
(
df
,
statics
,
how
=
'left'
)
.
fillna
(
0
)
print
(
"native_pre ok"
+
native_pre
.
shape
)
# df = pd.DataFrame(df)
# df["stat_date"] = df[0].apply(lambda x: x.split(",")[0])
# df["device_id"] = df[0].apply(lambda x: x.split(",")[1])
# df["city_id"] = df[0].apply(lambda x: x.split(",")[2])
# df["diary_id"] = df[0].apply(lambda x: x.split(",")[3])
# df["seq"] = list(range(df.shape[0]))
# df["seq"] = df["seq"].astype("str")
# df["ffm"] = df[0].apply(lambda x: ",".join(x.split(",")[4:]))
# df["ffm"] = df["seq"].str.cat(df["ffm"], sep=",")
# df["random"] = np.random.randint(1, 2147483647, df.shape[0])
# df = df.drop([0,"seq"], axis=1)
# print(df.head())
...
@@ -239,6 +271,7 @@ class multiFFMFormatPandas:
...
@@ -239,6 +271,7 @@ class multiFFMFormatPandas:
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
path
=
"/home/gmuser/ffm/"
path
=
"/home/gmuser/ffm/"
get_data
()
# get_data()
get_predict_set
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment