Commit 4208b026 authored by 王志伟's avatar 王志伟
parents b04809ac 8fcbf8f5
...@@ -36,11 +36,9 @@ ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.5 --learning_rate=0.0001 ...@@ -36,11 +36,9 @@ ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.5 --learning_rate=0.0001
echo "infer native..." echo "infer native..."
${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.5 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.3,0.3,0.3,0.3,0.3 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=2000 --field_size=15 --feature_size=300000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/native --task_type=infer > ${DATA_PATH}/native_infer.log ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.5 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.3,0.3,0.3,0.3,0.3 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=2000 --field_size=15 --feature_size=300000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/native --task_type=infer
echo "infer nearby..." echo "infer nearby..."
${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.5 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.3,0.3,0.3,0.3,0.3 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=2000 --field_size=15 --feature_size=300000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/nearby --task_type=infer > ${DATA_PATH}/nearby_infer.log ${PYTHON_PATH} ${MODEL_PATH}/train.py --ctr_task_wgt=0.5 --learning_rate=0.0001 --deep_layers=512,256,128,64,32 --dropout=0.3,0.3,0.3,0.3,0.3 --optimizer=Adam --num_epochs=1 --embedding_size=16 --batch_size=2000 --field_size=15 --feature_size=300000 --l2_reg=0.005 --log_steps=100 --num_threads=36 --model_dir=${DATA_PATH}/model_ckpt/DeepCvrMTL/ --data_dir=${DATA_PATH}/nearby --task_type=infer
echo "sort and 2sql"
${PYTHON_PATH} ${MODEL_PATH}/to_database.py > ${DATA_PATH}/insert_database.log
...@@ -72,21 +72,31 @@ def main(): ...@@ -72,21 +72,31 @@ def main():
charset='utf8' charset='utf8'
df_merge = df_all['device_id'] + df_all['city_id'] df_merge = df_all['device_id'] + df_all['city_id']
df_merge_str = (str(list(df_merge.values))).strip('[]') to_delete = list(df_merge.values)
total = len(to_delete)
df_merge_str = [str(to_delete[:int(total/5)]).strip('[]')]
for i in range(2,6):
start = int(total*(i -1)/5)
end = int(total*i/5)
tmp = str(to_delete[start:end]).strip('[]')
df_merge_str.append(tmp)
try: try:
delete_str = 'delete from esmm_device_diary_queue where concat(device_id,city_id) in ({0})'.format(df_merge_str) for i in df_merge_str:
con = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test',cursorclass=pymysql.cursors.DictCursor) delete_str = 'delete from esmm_device_diary_queue where concat(device_id,city_id) in ({0})'.format(i)
cur = con.cursor() con = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
cur.execute(delete_str) cur = con.cursor()
con.commit() cur.execute(delete_str)
print("delete done") con.commit()
print("delete done")
con.close()
engine = create_engine(str(r"mysql+pymysql://%s:" + '%s' + "@%s:%s/%s") % (user, password, host, port, db)) engine = create_engine(str(r"mysql+pymysql://%s:" + '%s' + "@%s:%s/%s") % (user, password, host, port, db))
df_all.to_sql('esmm_device_diary_queue',con=engine,if_exists='append',index=False,chunksize=8000) df_all.to_sql('esmm_device_diary_queue',con=engine,if_exists='append',index=False,chunksize=8000)
print("insert done")
except Exception as e: except Exception as e:
print(e) print(e)
print("done")
if __name__ == '__main__': if __name__ == '__main__':
path = "/home/gmuser/esmm" path = "/home/gmuser/esmm"
......
#! /bin/bash
git checkout master
PYTHON_PATH=/opt/anaconda3/envs/esmm/bin/python
MODEL_PATH=/srv/apps/ffm-baseline/eda/esmm/Model_pipline
DATA_PATH=/home/gmuser/esmm
echo "sort and 2sql"
${PYTHON_PATH} ${MODEL_PATH}/to_database.py
...@@ -16,7 +16,8 @@ def app_list_func(x,l): ...@@ -16,7 +16,8 @@ def app_list_func(x,l):
e.append(l[i]) e.append(l[i])
else: else:
e.append(0) e.append(0)
return ",".join([str(j) for j in e]) return e
# return ",".join([str(j) for j in e])
def multi_hot(df,column,n): def multi_hot(df,column,n):
...@@ -32,11 +33,6 @@ def multi_hot(df,column,n): ...@@ -32,11 +33,6 @@ def multi_hot(df,column,n):
def feature_engineer(): def feature_engineer():
# TODO 删除下面的测试写入
df = spark.sql("select y,z from esmm_train_data limit 60")
df.write.format("com.databricks.spark.avro").save(path=path + "tr", mode="overwrite")
print("done")
db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test') db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
sql = "select max(stat_date) from esmm_train_data" sql = "select max(stat_date) from esmm_train_data"
validate_date = con_sql(db, sql)[0].values.tolist()[0] validate_date = con_sql(db, sql)[0].values.tolist()[0]
...@@ -58,6 +54,7 @@ def feature_engineer(): ...@@ -58,6 +54,7 @@ def feature_engineer():
df = spark.sql(sql) df = spark.sql(sql)
# TODO 把下面的库改成tidb的数据库
url = "jdbc:mysql://172.16.30.143:3306/zhengxing" url = "jdbc:mysql://172.16.30.143:3306/zhengxing"
jdbcDF = spark.read.format("jdbc").option("driver", "com.mysql.jdbc.Driver").option("url", url) \ jdbcDF = spark.read.format("jdbc").option("driver", "com.mysql.jdbc.Driver").option("url", url) \
.option("dbtable", "api_service").option("user", 'work').option("password", 'BJQaT9VzDcuPBqkd').load() .option("dbtable", "api_service").option("user", 'work').option("password", 'BJQaT9VzDcuPBqkd').load()
...@@ -116,11 +113,13 @@ def feature_engineer(): ...@@ -116,11 +113,13 @@ def feature_engineer():
spark.createDataFrame(test).toDF("app_list","level2_ids","level3_ids","stat_date","ucity_id", "ccity_name", "device_type", "manufacturer", spark.createDataFrame(test).toDF("app_list","level2_ids","level3_ids","stat_date","ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "hospital_id","treatment_method", "price_min", "channel", "top", "time", "hospital_id","treatment_method", "price_min",
"price_max", "treatment_time","maintain_time", "recover_time","y","z")\ "price_max", "treatment_time","maintain_time", "recover_time","y","z")\
.write.format("avro").save(path=path+"va", mode="overwrite") .write.format("tfrecords").option("recordType", "Example").save(path=path+"va/", mode="overwrite")
print("va write done")
spark.createDataFrame(train).toDF("app_list","level2_ids","level3_ids","stat_date","ucity_id", "ccity_name", "device_type", "manufacturer", spark.createDataFrame(train).toDF("app_list","level2_ids","level3_ids","stat_date","ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "hospital_id","treatment_method", "price_min", "channel", "top", "time", "hospital_id","treatment_method", "price_min",
"price_max", "treatment_time","maintain_time", "recover_time","y","z")\ "price_max", "treatment_time","maintain_time", "recover_time","y","z")\
.write.format("avro").save(path=path+"tr", mode="overwrite") .write.format("tfrecords").option("recordType", "Example").save(path=path+"tr/", mode="overwrite")
print("done") print("done")
rdd.unpersist() rdd.unpersist()
...@@ -170,9 +169,7 @@ def get_predict(date,value_map,app_list_map,level2_map,level3_map): ...@@ -170,9 +169,7 @@ def get_predict(date,value_map,app_list_map,level2_map,level3_map):
native_pre = spark.createDataFrame(rdd.filter(lambda x:x[6] == 0).map(lambda x:(x[3],x[4],x[5])))\ native_pre = spark.createDataFrame(rdd.filter(lambda x:x[6] == 0).map(lambda x:(x[3],x[4],x[5])))\
.toDF("city","uid","cid_id") .toDF("city","uid","cid_id")
print("native") print("native")
print(native_pre.count()) native_pre.toPandas().to_csv(local_path+"native.csv", header=True)
native_pre.write.format("avro").save(path=path+"pre_native", mode="overwrite")
spark.createDataFrame(rdd.filter(lambda x: x[6] == 0) spark.createDataFrame(rdd.filter(lambda x: x[6] == 0)
.map(lambda x: (x[0], x[1], x[2],x[7],x[8],x[9],x[10],x[11],x[12], .map(lambda x: (x[0], x[1], x[2],x[7],x[8],x[9],x[10],x[11],x[12],
...@@ -181,13 +178,14 @@ def get_predict(date,value_map,app_list_map,level2_map,level3_map): ...@@ -181,13 +178,14 @@ def get_predict(date,value_map,app_list_map,level2_map,level3_map):
.toDF("app_list", "level2_ids", "level3_ids","y","z","ucity_id", .toDF("app_list", "level2_ids", "level3_ids","y","z","ucity_id",
"ccity_name", "device_type","manufacturer", "channel", "time", "hospital_id", "ccity_name", "device_type","manufacturer", "channel", "time", "hospital_id",
"treatment_method", "price_min", "price_max", "treatment_time", "maintain_time", "treatment_method", "price_min", "price_max", "treatment_time", "maintain_time",
"recover_time", "top","stat_date").write.format("avro").save(path=path+"native", mode="overwrite") "recover_time", "top","stat_date").write.format("tfrecords").option("recordType", "Example")\
.save(path=path+"native/", mode="overwrite")
nearby_pre = spark.createDataFrame(rdd.filter(lambda x: x[6] == 1).map(lambda x: (x[3], x[4], x[5]))) \ nearby_pre = spark.createDataFrame(rdd.filter(lambda x: x[6] == 1).map(lambda x: (x[3], x[4], x[5]))) \
.toDF("city", "uid", "cid_id") .toDF("city", "uid", "cid_id")
print("nearby") print("nearby")
print(nearby_pre.count()) nearby_pre.toPandas().to_csv(local_path+"nearby.csv", header=True)
nearby_pre.write.format("avro").save(path=path+"pre_nearby", mode="overwrite")
spark.createDataFrame(rdd.filter(lambda x: x[6] == 1) spark.createDataFrame(rdd.filter(lambda x: x[6] == 1)
.map(lambda x: (x[0], x[1], x[2], x[7], x[8], x[9], x[10], x[11], x[12], .map(lambda x: (x[0], x[1], x[2], x[7], x[8], x[9], x[10], x[11], x[12],
...@@ -196,7 +194,8 @@ def get_predict(date,value_map,app_list_map,level2_map,level3_map): ...@@ -196,7 +194,8 @@ def get_predict(date,value_map,app_list_map,level2_map,level3_map):
.toDF("app_list", "level2_ids", "level3_ids","y","z", "ucity_id", .toDF("app_list", "level2_ids", "level3_ids","y","z", "ucity_id",
"ccity_name", "device_type", "manufacturer", "channel", "time", "hospital_id", "ccity_name", "device_type", "manufacturer", "channel", "time", "hospital_id",
"treatment_method", "price_min", "price_max", "treatment_time", "maintain_time", "treatment_method", "price_min", "price_max", "treatment_time", "maintain_time",
"recover_time","top","stat_date").write.format("avro").save(path=path+"nearby", mode="overwrite") "recover_time","top","stat_date").write.format("tfrecords").option("recordType", "Example")\
.save(path=path+"nearby/", mode="overwrite")
rdd.unpersist() rdd.unpersist()
...@@ -236,8 +235,11 @@ if __name__ == '__main__': ...@@ -236,8 +235,11 @@ if __name__ == '__main__':
spark = SparkSession.builder.config(conf=sparkConf).enableHiveSupport().getOrCreate() spark = SparkSession.builder.config(conf=sparkConf).enableHiveSupport().getOrCreate()
ti = pti.TiContext(spark) ti = pti.TiContext(spark)
ti.tidbMapDatabase("jerry_test") ti.tidbMapDatabase("jerry_test")
# ti.tidbMapDatabase("eagle")
spark.sparkContext.setLogLevel("WARN") spark.sparkContext.setLogLevel("WARN")
path = "/strategy/esmm/" path = "hdfs:///strategy/esmm/"
local_path = "/home/gmuser/test/"
validate_date, value_map, app_list_map, leve2_map, leve3_map = feature_engineer() validate_date, value_map, app_list_map, leve2_map, leve3_map = feature_engineer()
get_predict(validate_date, value_map, app_list_map, leve2_map, leve3_map) get_predict(validate_date, value_map, app_list_map, leve2_map, leve3_map)
......
...@@ -3,13 +3,13 @@ ...@@ -3,13 +3,13 @@
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import pandas as pd
import os import os
from hdfs import * import glob
import tensorflow as tf import tensorflow as tf
import numpy as np import numpy as np
from multiprocessing import Pool as ThreadPool from multiprocessing import Pool as ThreadPool
from hdfs import InsecureClient
from hdfs.ext.dataframe import read_dataframe
flags = tf.app.flags flags = tf.app.flags
FLAGS = flags.FLAGS FLAGS = flags.FLAGS
...@@ -24,26 +24,40 @@ def gen_tfrecords(in_file): ...@@ -24,26 +24,40 @@ def gen_tfrecords(in_file):
basename = os.path.basename(in_file) + ".tfrecord" basename = os.path.basename(in_file) + ".tfrecord"
out_file = os.path.join(FLAGS.output_dir, basename) out_file = os.path.join(FLAGS.output_dir, basename)
tfrecord_out = tf.python_io.TFRecordWriter(out_file) tfrecord_out = tf.python_io.TFRecordWriter(out_file)
client_temp = InsecureClient('http://nvwa01:50070') df = pd.read_csv(in_file)
df = read_dataframe(client_temp,in_file)
for i in range(df.shape[0]): for i in range(df.shape[0]):
feats = ["ucity_id", "ccity_name", "device_type", "manufacturer", feats = ["ucity_id", "ccity_name", "device_type", "manufacturer",
"channel", "top", "time", "stat_date", "hospital_id", "channel", "top", "time", "stat_date", "hospital_id",
"treatment_method", "price_min", "price_max", "treatment_time", "maintain_time", "recover_time"] "method", "min", "max", "treatment_time", "maintain_time", "recover_time"]
id = np.array([]) id = np.array([])
for j in feats: for j in feats:
id = np.append(id,df[j][i]) id = np.append(id,df[j][i])
app_list = np.array(str(df["app_list"][i]).split(",")) app_list = np.array(str(df["app_list"][i]).split(","))
level2_list = np.array(str(df["level2_ids"][i]).split(",")) level2_list = np.array(str(df["clevel2_id"][i]).split(","))
level3_list = np.array(str(df["level3_ids"][i]).split(",")) level3_list = np.array(str(df["level3_ids"][i]).split(","))
tag1_list = np.array(str(df["tag1"][i]).split(","))
tag2_list = np.array(str(df["tag2"][i]).split(","))
tag3_list = np.array(str(df["tag3"][i]).split(","))
tag4_list = np.array(str(df["tag4"][i]).split(","))
tag5_list = np.array(str(df["tag5"][i]).split(","))
tag6_list = np.array(str(df["tag6"][i]).split(","))
tag7_list = np.array(str(df["tag7"][i]).split(","))
features = tf.train.Features(feature={ features = tf.train.Features(feature={
"y": tf.train.Feature(float_list=tf.train.FloatList(value=[df["y"][i]])), "y": tf.train.Feature(float_list=tf.train.FloatList(value=[df["y"][i]])),
"z": tf.train.Feature(float_list=tf.train.FloatList(value=[df["z"][i]])), "z": tf.train.Feature(float_list=tf.train.FloatList(value=[df["z"][i]])),
"ids": tf.train.Feature(int64_list=tf.train.Int64List(value=id.astype(np.int))), "ids": tf.train.Feature(int64_list=tf.train.Int64List(value=id.astype(np.int))),
"app_list": tf.train.Feature(int64_list=tf.train.Int64List(value=app_list.astype(np.int))), "app_list": tf.train.Feature(int64_list=tf.train.Int64List(value=app_list.astype(np.int))),
"level2_list": tf.train.Feature(int64_list=tf.train.Int64List(value=level2_list.astype(np.int))), "level2_list": tf.train.Feature(int64_list=tf.train.Int64List(value=level2_list.astype(np.int))),
"level3_list": tf.train.Feature(int64_list=tf.train.Int64List(value=level3_list.astype(np.int))) "level3_list": tf.train.Feature(int64_list=tf.train.Int64List(value=level3_list.astype(np.int))),
"tag1_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag1_list.astype(np.int))),
"tag2_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag2_list.astype(np.int))),
"tag3_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag3_list.astype(np.int))),
"tag4_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag4_list.astype(np.int))),
"tag5_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag5_list.astype(np.int))),
"tag6_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag6_list.astype(np.int))),
"tag7_list": tf.train.Feature(int64_list=tf.train.Int64List(value=tag7_list.astype(np.int)))
}) })
example = tf.train.Example(features = features) example = tf.train.Example(features = features)
...@@ -51,18 +65,10 @@ def gen_tfrecords(in_file): ...@@ -51,18 +65,10 @@ def gen_tfrecords(in_file):
tfrecord_out.write(serialized) tfrecord_out.write(serialized)
tfrecord_out.close() tfrecord_out.close()
def main(_): def main(_):
client = Client("http://nvwa01:50070")
file_list = []
for root, dir, files in client.walk(FLAGS.input_dir):
for file in files:
if file[-5:] == ".avro":
file_list.append(FLAGS.input_dir+file)
if not os.path.exists(FLAGS.output_dir): if not os.path.exists(FLAGS.output_dir):
os.mkdir(FLAGS.output_dir) os.mkdir(FLAGS.output_dir)
file_list = glob.glob(os.path.join(FLAGS.input_dir, "*.csv"))
print("total files: %d" % len(file_list)) print("total files: %d" % len(file_list))
pool = ThreadPool(FLAGS.threads) # Sets the pool size pool = ThreadPool(FLAGS.threads) # Sets the pool size
...@@ -73,5 +79,4 @@ def main(_): ...@@ -73,5 +79,4 @@ def main(_):
if __name__ == "__main__": if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO) tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run() tf.app.run()
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment