Commit 42e1b019 authored by 张彦钊's avatar 张彦钊

add

parent cbbc62f1
...@@ -4,14 +4,14 @@ import pandas as pd ...@@ -4,14 +4,14 @@ import pandas as pd
def exp(): def exp():
date_str = "20200101" date_str = "20200222"
sql = "select b.merchant_id " \ sql = "select b.merchant_id " \
"from statistic_doctor_rank_factor d " \ "from statistic_doctor_rank_factor d " \
"left join hippo_merchantrelevance b on d.doctor_id = b.doctor_id " \ "left join hippo_merchantrelevance b on d.doctor_id = b.doctor_id " \
"where d.partition_date = '{}';".format(date_str) "where d.partition_date = '{}';".format(date_str)
db = pymysql.connect(host='172.16.30.143', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing') db = pymysql.connect(host='172.16.30.141', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing')
cursor = db.cursor() cursor = db.cursor()
cursor.execute(sql) cursor.execute(sql)
result = cursor.fetchall() result = cursor.fetchall()
...@@ -49,7 +49,7 @@ def doctor(): ...@@ -49,7 +49,7 @@ def doctor():
"left join hippo_merchantrelevance b on d.doctor_id = b.doctor_id " \ "left join hippo_merchantrelevance b on d.doctor_id = b.doctor_id " \
"where d.partition_date = '{}';".format(date_str) "where d.partition_date = '{}';".format(date_str)
db = pymysql.connect(host='172.16.30.143', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing') db = pymysql.connect(host='172.16.30.141', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing')
cursor = db.cursor() cursor = db.cursor()
cursor.execute(sql) cursor.execute(sql)
result = cursor.fetchall() result = cursor.fetchall()
...@@ -151,7 +151,7 @@ def hospital(): ...@@ -151,7 +151,7 @@ def hospital():
"left join hippo_merchantrelevance b on api.id = b.doctor_id " \ "left join hippo_merchantrelevance b on api.id = b.doctor_id " \
"where api.doctor_type = 1 and h.date = '{}';".format(date_str) "where api.doctor_type = 1 and h.date = '{}';".format(date_str)
db = pymysql.connect(host='172.16.30.143', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing') db = pymysql.connect(host='172.16.30.141', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing')
cursor = db.cursor() cursor = db.cursor()
cursor.execute(sql) cursor.execute(sql)
result = cursor.fetchall() result = cursor.fetchall()
...@@ -248,7 +248,7 @@ def old(): ...@@ -248,7 +248,7 @@ def old():
"left join al_meigou_service_smart_rank_budan_payment budan on b.merchant_id = budan.merchant_id " \ "left join al_meigou_service_smart_rank_budan_payment budan on b.merchant_id = budan.merchant_id " \
"where d.partition_date = '{}' and budan.stat_date = '{}';".format(date_str, date_tmp) "where d.partition_date = '{}' and budan.stat_date = '{}';".format(date_str, date_tmp)
db = pymysql.connect(host='172.16.30.143', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing') db = pymysql.connect(host='172.16.30.141', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing')
cursor = db.cursor() cursor = db.cursor()
cursor.execute(sql) cursor.execute(sql)
result = cursor.fetchall() result = cursor.fetchall()
...@@ -318,10 +318,111 @@ def old(): ...@@ -318,10 +318,111 @@ def old():
print("doctor end") print("doctor end")
def new_doctor():
date_str = "20200101"
sql = "select d.doctor_id,d.service_exposure_pv_30,d.service_ctr_30,d.expert_exposure_pv_30," \
"d.expert_pv_30,b.merchant_id,m.doctor_discount_30_days from statistic_doctor_rank_factor d " \
"left join hippo_merchantrelevance b on d.doctor_id = b.doctor_id " \
"left join statistic_merchant_rank_factor m on b.merchant_id = m.merchant_id" \
"where d.partition_date = '{}' and m.partition_date = '{}';".format(date_str,date_str)
db = pymysql.connect(host='172.16.30.141', port=3306, user='work', passwd='BJQaT9VzDcuPBqkd', db='zhengxing')
cursor = db.cursor()
cursor.execute(sql)
result = cursor.fetchall()
df = pd.DataFrame(list(result))
print(df.shape)
print(df.head(6))
# name = ["doctor_id", "service_exposure_pv_30", "service_ctr_30", "expert_exposure_pv_30", "expert_pv_30",
# "merchant_id"]
#
# df = df.rename(columns=dict(zip(list(range(len(name))), name)))
# print(df.shape)
#
# df = df.dropna(subset=["merchant_id"])
# print("drop")
# print(df.shape)
# print(df.head(6))
#
# sql = "select merchant_id,doctor_discount_30_days,expand_rechange_amount_30," \
# "service_pv_30,expert_pv_30,organization_pv_30 from statistic_merchant_rank_factor " \
# "where partition_date = '{}';".format(date_str)
#
# cursor = db.cursor()
# cursor.execute(sql)
# result = cursor.fetchall()
# db.close()
# tmp = pd.DataFrame(list(result))
# name = ["merchant_id", "doctor_discount_30_days", "expand_rechange_amount_30", "service_pv_30",
# "mexpert_pv_30", "organization_pv_30"]
# tmp = tmp.rename(columns=dict(zip(list(range(len(name))), name)))
# print("tmp")
# print(tmp.shape)
# print(tmp.head(6))
#
# df["merchant_id"] = df["merchant_id"].astype('int64')
# df["merchant_id"] = df["merchant_id"].astype("str")
# tmp["merchant_id"] = tmp["merchant_id"].astype("str")
# df = pd.merge(df, tmp, on='merchant_id')
#
# print("merge")
# print(df.shape)
#
# for i in ["service_exposure_pv_30", "service_ctr_30", "expert_exposure_pv_30", "expert_pv_30",
# "doctor_discount_30_days", "expand_rechange_amount_30", "service_pv_30",
# "mexpert_pv_30", "organization_pv_30"]:
# df[i] = df[i].astype("float")
#
# df["all_exposure"] = df["service_exposure_pv_30"] + df["expert_exposure_pv_30"]
# df = df[~df["expert_exposure_pv_30"].isin([0.0])]
# print("expert_exposure_pv_30")
# print(df.shape)
# df = df[~df["all_exposure"].isin([0.0])]
# print("all_exposure")
# print(df.shape)
# df["tmp"] = df["service_pv_30"] + df["mexpert_pv_30"] +df["organization_pv_30"]
# df = df[~df["tmp"].isin([0.0])]
# print("tmp")
# print(df.shape)
# df["ctr"] = df["service_exposure_pv_30"] / df["all_exposure"] * df["service_ctr_30"] + \
# df["expert_exposure_pv_30"]/df["all_exposure"] * (df["expert_pv_30"] / df["expert_exposure_pv_30"])
#
# df.loc[df["doctor_discount_30_days"] < 0, ["doctor_discount_30_days"]] = 0
# # df.loc[df["budan_payment_30_days"] < 0, ["budan_payment_30_days"]] = 0
# df.loc[df["expand_rechange_amount_30"] < 0, ["expand_rechange_amount_30"]] = 0
#
# df["commission"] = df["doctor_discount_30_days"]/df["tmp"]
# df["pv_ad"] = df["expand_rechange_amount_30"]/df["tmp"]
#
# df.loc[df["all_exposure"] <= 1500, ["ctr"]] = 0.01
# df.loc[df["ctr"] < 0.01, ["ctr"]] = 0.01
# df.loc[df["ctr"] > 0.2, ["ctr"]] = 0.2
# df.loc[df["commission"] > 20, ["commission"]] = 20
# df.loc[df["commission"] < 0.01, ["commission"]] = 0.01
# df.loc[df["pv_ad"] > 20, ["pv_ad"]] = 20
# df.loc[df["pv_ad"] < 0.01, ["pv_ad"]] = 0.01
#
# df["score"] = df["ctr"] ** 0.5 * (df["commission"] + df["pv_ad"])
# print(df.shape)
#
# columns = ["doctor_id","score","ctr","commission","pv_ad","service_exposure_pv_30",
# "service_ctr_30","expert_exposure_pv_30","expert_pv_30",
# "merchant_id","doctor_discount_30_days","expand_rechange_amount_30","service_pv_30",
# "mexpert_pv_30","organization_pv_30"]
# data = df.loc[:, columns]
#
# data = data.drop_duplicates()
# print(data.shape)
# data.to_csv('/tmp/1_doctor.csv',index=False)
# print("doctor end")
if __name__ == "__main__": if __name__ == "__main__":
doctor() # doctor()
# hospital() # hospital()
# old() # old()
new_doctor()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment