Commit 4300c804 authored by 张彦钊's avatar 张彦钊

delete redis

parent 32b39b12
...@@ -3,7 +3,6 @@ from datetime import datetime ...@@ -3,7 +3,6 @@ from datetime import datetime
from datetime import timedelta from datetime import timedelta
import pymysql import pymysql
import numpy as np import numpy as np
import redis
import pandas as pd import pandas as pd
from sklearn import metrics from sklearn import metrics
from sklearn.metrics import auc from sklearn.metrics import auc
...@@ -46,15 +45,6 @@ def con_sql(sql): ...@@ -46,15 +45,6 @@ def con_sql(sql):
return df return df
# 把数据写到redis里
# TODO 生产环境的redis地址没有提供,下面的地址是测试环境的,需要改成生产环境地址
def add_data_to_redis(key, val):
r = redis.StrictRedis(host='10.30.50.58', port=6379, db=12)
r.set(key, val)
# 设置key的过期时间,36小时后过期
r.expire(key, 36 * 60 * 60)
# 多线程ffm转化类: # 多线程ffm转化类:
class multiFFMFormatPandas: class multiFFMFormatPandas:
def __init__(self): def __init__(self):
......
...@@ -52,9 +52,6 @@ def predict(user_profile): ...@@ -52,9 +52,6 @@ def predict(user_profile):
print("该用户预测结束") print("该用户预测结束")
predict_save_to_local(user_profile, instance) predict_save_to_local(user_profile, instance)
#TODO 没有提供生产环境的redis地址,所以这个函数先不运行
# predict_save_to_redis(user_profile, instance)
# 将预测结果与device_id 进行拼接,并按照概率降序排序 # 将预测结果与device_id 进行拼接,并按照概率降序排序
def wrapper_result(user_profile, instance): def wrapper_result(user_profile, instance):
proba = pd.read_csv(DIRECTORY_PATH + proba = pd.read_csv(DIRECTORY_PATH +
...@@ -72,12 +69,6 @@ def predict_save_to_local(user_profile, instance): ...@@ -72,12 +69,6 @@ def predict_save_to_local(user_profile, instance):
proba.to_csv(DIRECTORY_PATH + "result/feed_{}".format(user_profile['device_id']), index=False) proba.to_csv(DIRECTORY_PATH + "result/feed_{}".format(user_profile['device_id']), index=False)
print("成功将预测候选集保存到本地") print("成功将预测候选集保存到本地")
# 预测候选集保存到redis
def predict_save_to_redis(user_profile, instance):
device_id = user_profile['device_id']
cid_list = wrapper_result(user_profile, instance)["cid"].values.tolist()
add_data_to_redis(device_id,cid_list)
print("成功将预测候选集保存到redis")
def router(device_id): def router(device_id):
user_profile, not_exist = fetch_user_profile(device_id) user_profile, not_exist = fetch_user_profile(device_id)
......
...@@ -3,7 +3,6 @@ from datetime import datetime ...@@ -3,7 +3,6 @@ from datetime import datetime
from datetime import timedelta from datetime import timedelta
import pymysql import pymysql
import numpy as np import numpy as np
import redis
import pandas as pd import pandas as pd
from sklearn import metrics from sklearn import metrics
from sklearn.metrics import auc from sklearn.metrics import auc
...@@ -73,15 +72,6 @@ def restart_process(): ...@@ -73,15 +72,6 @@ def restart_process():
print("成功重启diaryUpdateOnlineOffline.py") print("成功重启diaryUpdateOnlineOffline.py")
# 把数据写到redis里
# TODO 生产环境的redis地址没有提供,下面的地址是测试环境的,需要改成生产环境地址
def add_data_to_redis(key, val):
r = redis.StrictRedis(host='10.30.50.58', port=6379, db=12)
r.set(key, val)
# 设置key的过期时间,36小时后过期
r.expire(key, 36 * 60 * 60)
# 多线程ffm转化类: # 多线程ffm转化类:
class multiFFMFormatPandas: class multiFFMFormatPandas:
def __init__(self): def __init__(self):
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment